## MAE108 S2014-Homework 5 Solutions

## Problem 3.15

We are given $\nu=1 / 5000$ failures $/ \mathrm{hr}$
a) We let $\nu *(t=2500)=1 / 2$. Then we say

$$
P\left(X_{t} \geq 1\right)=1-P\left(X_{t}=0\right)=1-\frac{(\nu t)^{0}}{0!} e^{-\nu t}=1-e^{-1 / 2}=0.3935
$$

b) The number of airplanes with mechanical failures $Y$ with $p=1-e^{-1 / 2}$ is given

$$
\begin{aligned}
P\left(Y_{10} \leq 2\right) & =P\left(Y_{10}=0\right)+P\left(Y_{10}=1\right)+P\left(Y_{10}=2\right) \\
& =\binom{10}{0} p^{0}(1-p)^{(10-0)}+\binom{10}{1} p^{1}(1-p)^{(10-1)}+\binom{10}{2} p^{2}(1-p)^{(10-2)} \\
& =e^{-5}+10\left(1-e^{-1 / 2}\right) e^{9 / 2}+45\left(1-e^{-1 / 2}\right)^{2} e^{-4}=0.1781
\end{aligned}
$$

c) We want

$$
P(X \geq 1)=1-P(X=0)=1-\frac{\left(\nu t^{\prime}\right)^{0}}{0!} e^{-\nu t^{\prime}}=1-e^{-\nu t^{\prime}} \leq 0.05 \rightarrow t^{\prime} \leq-\ln (19 / 20) / \nu=256.5
$$

There should be an inspection every 256.6 hours or less.

## Problem 3.17

a) Let $N$ be the number of poor air quality periods during the next 4.5 months; $N$ follows a Poisson process with mean value, $\lambda=\nu \mathrm{t}=(1 / \mathrm{month})(4.5$ months $)=4.5$, hence

$$
\begin{aligned}
P(N \leq 2) & =P(N=0)+P(N=1)+P(N=2) \\
& =\frac{\lambda^{0}}{0!} e^{-\lambda}+\frac{\lambda^{1}}{1!} e^{-\lambda}+\frac{\lambda^{2}}{2!} e^{-\lambda}=e^{-4.5}\left(1+4.5+4.5^{2}\right) \\
& =0.174
\end{aligned}
$$

b) Since only 0.1 of poor quality periods have hazadous levels, the "hazadous" periods $(H)$ must occur at a mean rate of 1 per month* $0.1=0.1$ per month, hence, over 3 months, $H$ has the mean

$$
\begin{gathered}
\lambda_{H}=(0.1) * 3=0.3 \\
\rightarrow P(\text { ever hazardous })=1-P(H=0)=1-\frac{(0.3)^{0}}{0!} e^{-0.3}=0.259
\end{gathered}
$$

## Problem 3.19

a) Mean rate of accident: $\nu=1 / 3$ accident per year, $\lambda_{5}=\nu * t=1 / 3 * 5$

$$
P(N=0 \text { in } 5 \text { years })=\frac{\lambda_{5}^{0}}{0!} e^{-\lambda_{5}}=e^{-5 / 3}=e^{-1.667}=0.1889
$$

b) Let $N$ the number of fatal accidents over 3 years

Mean rate of fatal accident: $\nu_{D}=1 / 3 * 0.05=1 / 60=0.01667$ per year, $\lambda_{D 3}=\nu_{D} * t=$ $1 / 60 * 3=0.05$

$$
\begin{aligned}
P(N \geq 1) & =1-P(N=0) \\
& =1-\frac{\lambda_{D 3}^{0}}{0!} e^{-\lambda_{D 3}} \\
& =1-e^{-0.05} \quad=0.0488
\end{aligned}
$$

## Problem 3.21

We are given $\nu=3$ accidents/year $=3 / 12$ accidents/month
a) Let $X$ be the number of accidents
in two months $\lambda_{2}=\nu * 2$ months

$$
\lambda_{2}=\frac{3}{12 \text { months }} * 2 \text { months }=0.5
$$

in four months $\lambda_{4}=\nu * 4$ months

$$
\lambda_{4}=\frac{3}{12 \mathrm{months}} * 4 \text { months }=1
$$

Calculate the probability of one accident in two months

$$
P(X=1)=\frac{\left(\lambda_{2}\right)^{1}}{1!} e^{-\lambda_{2}}=\frac{0.5}{1} e^{-0.5}=0.303
$$

and the probability of two accidents in four months

$$
P(X=2)=\frac{\left(\lambda_{4}\right)^{2}}{2!} e^{-\lambda_{4}}=\frac{1}{2!} e^{-1}=0.184
$$

So to probability of one accident in two months and probability of exactly two accidents in four months is not the same. In other words, they are not a uniform distibuted.
b) Let $F$ be the number of fatal accidents Calculate the mean rate of fatal accidents

$$
\begin{aligned}
\nu_{F} & =\text { accident per month } * \text { percentage of fatal accidents } \\
& =\frac{3}{12} * \frac{20}{100} \\
& =0.05 \text { per month }
\end{aligned}
$$

Calculate the average number of fatal accidents in two months.

$$
\lambda_{F}=\nu_{F} * 2 \text { months }=0.05 * 2=0.1
$$

Calculate the probability of the fatal accident in two months.

$$
\begin{aligned}
P(F) & =1-P(F=0) \\
& =1-\frac{\lambda_{F}^{0}}{0!} e^{-\lambda_{F}} \\
& =1-\frac{0.1^{0}}{1} e^{-0.1} \\
& =1-0.904 \\
& =0.095
\end{aligned}
$$

## Problem 3.23

Let the area of the panel $t, t=l * w$, where $t, l$ and $w$ are area, length and width. $t=3 m * 5 m=15 m^{2}$
Calculate the average number of flaws in t when the mean flaw rate $(\nu)$ is $1 / 50 \mathrm{~m}^{2}$

$$
\lambda_{t}=\nu * t=1 / 50 m^{2} * 15 m^{2}=0.3
$$

a) The panel is replaced when it contains two or more flaws. And let $X$ be the number of flaws in a panel. $P(X=x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$ because it follows Poisson process
$P(X \geq 2)=1-P(X=0)-P(X=1)=1-\frac{\lambda_{t}^{0}}{0!} e^{-0.3}-\frac{\lambda_{t}^{1}}{1!} e^{-0.3}=1-0.741-0.222=0.037$
b) Calculate the average number of replacements in 100 panels. Let $N$ be the average number of panels to be replaced. Let $C_{R}$ be the replacement cost.

$$
\begin{aligned}
N & =P(X \geq 2) * 100 \text { panels } \\
& =0.037 * 100=3.7 \text { panels } \\
C_{R} & =N * \text { cost per replacement } \\
& =3.7 \text { panels } * \$ 5000 \\
& =\$ 18,500
\end{aligned}
$$

c) The mean flaw rate for higher grade panels, $\nu$ is $1 / 80 \mathrm{~m}^{2}$ and same process as a) and b) $t=3 m * 5 m=15 m^{2}$
Calculate the average number of flaws in t when the mean flaw rate $(\nu)$ is $1 / 80 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \lambda_{t}=\nu * t=1 / 80 m^{2} * 15 m^{2}=0.1875 \\
& P(X \geq 2)=1-P(X=0)-P(X=1)=1-\frac{\lambda_{t}^{0}}{0!} e^{-0.3}-\frac{\lambda_{t}^{1}}{1!} e^{-0.3}=1-0.829-0.155=0.0155 \\
& N=P(X \geq 2) * 100 \text { panels } \\
&=0.0155 * 100=1.55 \text { panels } \\
& C_{R}=N * \text { cost per replacement } \\
&=1.55 \text { panels } * \$ 5,100 \\
&=\$ 7,920
\end{aligned}
$$

The initial cost of the old panel type is taken as $C$. The initial cost per higher grade panel is 100 more than the old panel type. So the total initial cost of the higher grade panel is obtained as $C+\$ 100$ per panel $* 100$ panels
(a) total expeted cost of old type panel, EC1

$$
E C 1=\text { initial cost }+ \text { replacement cost }=C+\$ 18,500
$$

(b) total expected cost of higher grade panel, $E C 2$

$$
\begin{aligned}
E C 2 & =\text { initial cost }+ \text { replacement cost } \\
& =(C+\$ 100 * 100)+\$ 7,290=C+\$ 17,290
\end{aligned}
$$

Comparing $E C 1$ and $E C 2$, the total expected cost of higher grade panels is lower. Therefore, the higher grade panels are recommended.

## Problem 3.27

a) Let $X$ be the total number of excavations along the pipeline over the next year; $X$ has a Poisson distribution with a mean occurence rate $=\nu=1 / 50$ exacavations per mile. Then, $\lambda_{100}=\nu * t=1 / 50$ excavations $/$ miles $* 100$ miles $=2$ (excavations)

$$
\begin{aligned}
P(\text { at least two excavations })=P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-\frac{\lambda_{100}^{0}}{0!} e^{-\lambda_{100}}-\frac{\lambda_{100}^{1}}{1!} e^{-\lambda_{100}} \\
& =1-0.1353-0.2706 \\
& =0.594
\end{aligned}
$$

b) For each excavation that takes place, the pipeline has 0.4 probability of getting damaged and hence the probability of having no damage space $\left(p^{\prime}\right)=(1-0.4)=0.6$

$$
P(\text { any damage to pipeline } \mid X=2)=1-P(\text { no damge } \mid X=2)=1-0.6^{2}=0.64
$$

Alternative method
Let $D_{i}$ denote the event "damage to pipeline in $i$-th excavation"; the desired probability is

$$
\begin{aligned}
P\left(D_{1} \cup D_{2}\right) & =P\left(D_{1}\right)+P\left(D_{2}\right)-P\left(D_{1} D_{2}\right) \\
& =P\left(D_{1}\right)+P\left(D_{2}\right)-P\left(D_{1} \mid D_{2}\right) P\left(D_{2}\right) \\
& =P\left(D_{1}\right)+P\left(D_{2}\right)-P\left(D_{1}\right) P\left(D_{2}\right) \\
& =0.4+0.4-0.4^{2}=0.64
\end{aligned}
$$

c) Any number $x$ of excavations could take place, but there must be no damage no matter what the $x$ value is. Denoting $\lambda=\nu * 100=2$, we have the total probability

$$
\begin{aligned}
& P(\text { no damage })=\sum_{x=0}^{\infty} P(\text { no damage } \mid x \text { excavation }) * P(x \text { excavations }) \\
&=\sum_{x=0}^{\infty}\left(p^{\prime}\right)^{x} e^{-\lambda} \frac{\lambda^{x}}{x!} \\
&=\sum_{x=0}^{\infty}(0.6)^{x} e^{-2} \frac{2^{x}}{x!} \\
&=e^{-2} \sum_{x=0}^{\infty} \frac{(0.6 * 2)^{x}}{x!} \ldots(*) \\
&=e^{-2} * e^{1.2} \\
&=e^{-0.8} \\
&=0.449 \\
& \\
&(*) \ldots \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=e^{\lambda}
\end{aligned}
$$

## Problem 3.32

a) The mean rate of defects, $\nu_{D}$ is $1 / 200 \mathrm{~m}$. Let $D$ denote defects and the defects that remain after inspection is denoted by $R$.
Calculate mean rate of defects that remain in the system after inspection $\nu_{R}=\nu_{D} * P(D)$
where $\nu_{R}$ : the mean rate of defects that remain after inspection, $P(D)$ : the probability that the defect remains after inspection.

$$
\begin{aligned}
\nu_{R} & =1 / 200 \mathrm{~m} * 0.2 \\
& =0.001 \text { per meter }
\end{aligned}
$$

b) Calculate the average number of occurences of defects. $\lambda_{3000}=\nu_{R} * t=0.001 * 3000=3$ Calculate the probability that there are the more than two defects.

$$
\begin{aligned}
P(D>2) & =1-P(D=0)-P(D=1)-P(D=2) \\
& =1-\frac{\lambda_{3000}^{0}}{0!} e^{-\lambda_{3000}}-\frac{\lambda_{3000}^{1}}{1!} e^{-\lambda_{3000}}-\frac{\lambda_{3000}^{2}}{2!} e^{-\lambda_{3000}} \\
& =1-\frac{3^{0}}{0!} e^{-3}-\frac{3^{1}}{1!} e^{-3}-\frac{3^{2}}{2!} e^{-3} \\
& =1-0.0497-0.149-0.224 \\
& =0.577
\end{aligned}
$$

c) Let $p=P(D)$.
$\nu_{R}=\nu_{D} * p=1 / 200 \mathrm{~m} * p=0.005 p$ per meter
Calculate the average number of occurrence of defects for $1,000 \mathrm{~m}$.
$\lambda=\nu_{R} * t=0.05 p$ per meter $* 1000$ meters $=5 p$
The system is required to achieve $95 \%$ probability free of deects.

$$
\begin{aligned}
P(D=0) & =95 \% \\
\frac{\lambda^{0}}{0!} e^{-\lambda} & =0.95 \\
\frac{(5 p)^{0}}{1} e^{-5 p} & =0.95 \\
-5 p & =\ln 0.95 \\
p & =\frac{-0.051}{-5} \\
& =0.0103 \\
& =1 \%
\end{aligned}
$$

## Problem 3.34

a) The number of defects should be zero for all 20 bars to pass the test.

And let $N=1000$ : total size of the rebars, $m=20$ : the number of defective rebars in $N, n$ :the number of sample rebars taken from the total rebar $(N)$, and $x$ : the number of defective rebars in our subsample of 20 elements(m)
all 20 rebars will pass test means no defective rebars in the sample $(x=0)$.

$$
\begin{aligned}
P(X=0) & =\left.\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}\right|_{x=0} \\
& =\frac{\binom{20}{0}\binom{1000-20}{20-0}}{\binom{1000}{20}} \\
& =\frac{\frac{20!(20-0)!}{} \frac{980!(980-20)!}{1000!}}{20!(1000-20)!} \\
& =\frac{1 * 2.2575 * 10^{4} 1}{3.3947 * 10^{4} 1} \\
& =0.665
\end{aligned}
$$

b) Calculate the probability that at least two bars will fail

$$
\begin{aligned}
P(X \geq 2) & =1-P(x=0)-P(x=1) \\
& =1-\left.\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}\right|_{X=0}-\left.\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}\right|_{X=1} \\
& =1-\frac{\binom{20}{0}\binom{1000-20}{20-0}}{\binom{1000}{20}}-\frac{\binom{20}{1}\binom{1000-20}{20-1}}{\binom{1000}{20}} \\
& =1-\frac{\frac{20!}{0!(20-0)!} \frac{980!(980-20)!}{1000!}}{\frac{100}{20!(1000-20)!}}-\frac{\frac{280!}{1!(20-1)!} \frac{19!(980-19)!}{2000!}}{2000-20)!} \\
& =1-\frac{1 * 2.2575 * 10^{41}}{3.3947 * 10^{41}}-\frac{20 * 4.6982 * 10^{39}}{3.3947 * 10^{41}} \\
& =1-0.665-0.277 \\
& =0.058
\end{aligned}
$$

c) The company assures $90 \%$ of quality which could contain $2 \%$ defective rebars. So there will be samples containing $2 \%$ defectives with $90 \%$ certainty.

$$
\begin{aligned}
1-P(X \geq 1) & =1-0.9 \\
P(X=0) & =\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}} \\
& =\frac{\binom{20}{0}\binom{1000-20}{n-0}}{\binom{1000}{n}} \\
0.10 & =\frac{\frac{20!(20-0)!}{n!(980-n)!}}{\frac{1000!}{n!(1000-n)!}} \\
& =1 * \frac{980!}{n!(980-n)!} * \frac{n!(1000-n)!}{1000!} \ldots(* *) \\
& =\frac{1}{(980-n)!} * \frac{(1000-n)!}{8.258 * 10^{59}}
\end{aligned}
$$

It's not easy to calculate this value but could get the value using online website.(www.wolframalpha.com). Once you type the equation which is at $\left({ }^{* *}\right)$ into the box, you can get the value from the plot. Put cursor on the red point and see the value(107.712). So 108 rebar is required.

