MAE108 S2014 - Homework 4 Solutions

Problem 2.56

Let's define the following events:
$A=$ a site contains an anomaly.
$T_{1}=$ the first geophysical technique detects an anomaly.
We know $P(A)=0.3, P\left(T_{1} \mid A\right)=0.5$, and $P\left(T_{1} \mid \bar{A}\right)=0$.
a) The probability of an anomaly given failure of the first geophysical technique is

$$
\begin{aligned}
P\left(A \mid \bar{T}_{1}\right) & =\frac{P(A)}{P\left(\bar{T}_{1}\right)} P\left(\bar{T}_{1} \mid A\right)=\frac{P(A)}{1-P\left(T_{1}\right)}\left(1-P\left(T_{1} \mid A\right)\right) \\
& =\frac{0.3}{1-0.15}(1-0.5)=0.176
\end{aligned}
$$

where

$$
P\left(T_{1}\right)=P\left(T_{1} \mid A\right) P(A)+P(T \mid \bar{A}) P(\bar{A})=0.5 * 0.3+0 * 0.7=0.15
$$

b) We have a new event $T_{2}=$ the second geophysical technique detects an anomaly. For the rest of this question we will assume that T_{1} occured, and we will omit it from our conditional statements. So our updated probabilities and new information gives us $P(A)=$ $0.176, P\left(T_{2} \mid A\right)=0.8$, and $P\left(T_{2} \mid \bar{A}\right)=0$.
i) The engineer's new confidence that the site is free of any abnormality is given by

$$
\begin{aligned}
P\left(\bar{A} \mid \bar{T}_{2}\right) & =\frac{P(\bar{A})}{P\left(\bar{T}_{2}\right)} P\left(\bar{T}_{2} \mid \bar{A}\right) \\
& =\frac{(1-P(A))\left(1-P\left(T_{2} \mid \bar{A}\right)\right)}{\left.1-\left[P\left(T_{2} \mid A\right) P(A)+P\left(T_{2} \mid \bar{A}\right) P(\bar{A})\right)\right]}=\frac{(1-0.176)(1-0)}{1-[0.8 * 0.176]}=0.959 .
\end{aligned}
$$

ii) We define $S=$ the event that the foundation is safe. The following quantities are given: $P(S \mid \bar{A})=0.9999, P(S \mid A)=0.80$. We now assume that both T_{1} and T_{2} occurred and exclude both from conditionals. We are looking for

$$
\begin{aligned}
P(\bar{S}) & =1-(P(S \mid A) P(A)+P(S \mid \bar{A}) P(\bar{A})) \\
& =1-(0.80 *(1-0.959)+0.9999 * 0.959)=0.008
\end{aligned}
$$

iii) The expected loss due to foundation failure is given by

$$
\begin{aligned}
\text { Expected loss } & =(\text { probability of failure }) *(\text { failure loss }) \\
& =(1-P(S)) *(\text { failure loss })=(1-0.992)(1000000)=\$ 8300
\end{aligned}
$$

If the site is verified as anomaly free, then the amount saved in expected loss is

$$
\begin{aligned}
\text { Amount saved } & =8300-P(\bar{S} \mid \bar{A}) *(\text { failure loss }) \\
& =8300-(1-P(S \mid \bar{A})) *(\text { failure loss }) \\
& =8300-(1-0.9999) * 1000000=\$ 8200
\end{aligned}
$$

Problem 2.58

We will define the following events:
$L=$ an earthquake has low intensity
$M=$ an earthquake has medium intensity
$H=$ an earthquake has high intensity
$P=$ a building is poorly constructed
$W=$ a building is well constructed.
$D=$ a building is damaged from an earthquake.
We know $P(P)=0.2, P(W)=0.8, P(D \mid L P)=0.10, P(D \mid M P)=0.50, P(D \mid H P)=0.90, P(D \mid L W)=$ $0, P(D \mid M W)=0.05$, and $P(D \mid H W)=0.20$.

From the relative likelihoods of 15:4:1 we know

$$
\begin{aligned}
P(L)+P(M)+P(H) & =1, P(L)=15 * P(H), P(M)=4 * P(H) \\
(1+4+15) P(H) & =1 \Longrightarrow P(H)=0.05
\end{aligned}
$$

So we also know $P(H)=0.05, P(M)=0.20$, and $P(L)=0.75$.
a) The probability that a well-constructed building will be damaged during an earthquake is

$$
P(D \mid W)=P(D \mid L W) P(L \mid W)+P(D \mid M W) P(M \mid W)+P(D \mid H W) P(H \mid W)
$$

and because the quality of the building is independent of the earthquake's intensity,

$$
\begin{aligned}
& =P(D \mid L W) P(L)+P(D \mid M W) P(M)+P(D \mid H W) P(H) \\
& =0 * 0.75+0.05 * 0.20+0.20 * 0.05=0.02
\end{aligned}
$$

b) The proportion of buildings damaged by the earthquake is

$$
\begin{aligned}
P(D) & =P(D \mid W) P(W)+P(D \mid P) P(P) \\
& =0.02 * 0.8+0.22 * 0.2=0.06
\end{aligned}
$$

where

$$
\begin{aligned}
P(D \mid P) & =P(D \mid L P) P(L)+P(D \mid M P) P(M)+P(D \mid H P) P(H) \\
& =0.10 * 0.75+0.50 * 0.20+0.90 * 0.05=0.22
\end{aligned}
$$

c) The probability that a building is poorly constructed given that it is damaged after an earthquake is

$$
P(P \mid D)=\frac{P(P)}{P(D)} P(D \mid P)=\frac{0.2}{0.06} * 0.22=0.73
$$

Problem 2.62

We will define the following events:
$A=$ concrete has poor aggregates.
$W=$ concrete has poor workmanship.
We know $P(A)=0.2, P(W \mid A)=0.3$, and $P(A \mid W)=0.15$.
a) The probability of poor workmanship is

$$
\begin{aligned}
P(W) & =\frac{P(W \mid A)}{P(A \mid W)} P(A) \\
& =\frac{0.3}{0.15} * 0.2=0.4
\end{aligned}
$$

b) The probability of at least one of the causes of defect is

$$
\begin{aligned}
P(A \cup W) & =P(A)+P(W)-P(A W) \\
& =P(A)+P(W)-P(W \mid A) P(A) \\
& =0.2+0.4-0.3 * 0.2=0.54 .
\end{aligned}
$$

c) The probability that only one of the two causes of defect is

$$
\begin{aligned}
P(A \cup W)-P(A W) & =P(A \cup W)-P(W \mid A) P(A) \\
& =0.54 * 0.3-0.2=0.48 .
\end{aligned}
$$

d) We define a new event $D=$ the concrete is defective. We have new information that $P(D \mid A \bar{W})=0.15, P(D \mid \bar{A} W)=0.20, P(D \mid A W)=0.80$, and $P(D \mid \bar{A} \bar{W})=0.05$.
The probability of defective concrete is

$$
P(D)=P(D \mid A W) P(A W)+P(D \mid A \bar{W}) P(A \bar{W})+P(D \mid \bar{A} W) P(\bar{A} W)+P(D \mid \bar{A} \bar{W}) P(\bar{A} \bar{W})
$$

where

$$
\begin{aligned}
P(A W) & =P(W \mid A) P(A)=0.3 * 0.2=0.06 \\
P(A \bar{W}) & =(1-P(W \mid A)) P(A)=(1-0.3) * 0.2=0.14 \\
P(\bar{A} W) & =(1-P(A \mid W)) P(W)=(1-0.15) * 0.4=0.34 \\
P(D \mid \bar{A} \bar{W}) & =1-P(A \cup W)=1-0.54=0.46 .
\end{aligned}
$$

So

$$
P(D)=0.80 * 0.06+0.15 * 0.14+0.20 * 0.34+0.05 * 0.46=0.16 \text {. }
$$

e) The probability that defective concrete is caused by both poor aggregates and poor workmanship is

$$
P(A W \mid D)=\frac{P(A W)}{P(D)} P(D \mid A W)=\frac{0.06}{0.16} * 0.8=0.3 .
$$

Problem 2.65

Let's define the following events:
$A=$ company A discovers oil.
$B=$ company B discovers oil.
$C=$ company C discovers oil.
We know $P(A)=0.4, P(B)=0.6, P(C)=0.2$, and $P(A \mid B)=1.2 * 0.48 . C$ is statistically independent of B or A.
a) The probability of that oil will be discovered in the area by one or more of the three companies is

$$
P(A \cup B \cup C)=1-P(\bar{A} \bar{B} \bar{C})=1-P(\bar{A} \bar{B}) P(\bar{C})
$$

where

$$
\begin{aligned}
P(\bar{A} \bar{B}) & =1-P(A \cup B)=1-P(A)-P(B)+P A \mid B) P(B) \\
& =1-0.4-0.6+0.48 * 0.6=0.288
\end{aligned}
$$

Hence

$$
P(A \cup B \cup C)=1-0.288 * 0.8=0.77
$$

b) The probability of that oil will be discovered by Company C given that oil is discovered in the area is

$$
P(C \mid A \cup B \cup C)=\frac{P(C(A \cup B \cup C))}{P(A \cup B \cup C)}=\frac{P(C)}{P(A \cup B \cup C)}=\frac{0.2}{0.77}=0.26
$$

c) The probability that only one of the threes companies will discover oil in the area is

$$
P(A \bar{B} \bar{C} \cup \bar{A} B \bar{C} \cup \bar{A} \bar{B} C)=P(A \bar{B} \bar{C})+P(\bar{A} B \bar{C})+P(\bar{A} \bar{B} C)
$$

where

$$
\begin{aligned}
P(\bar{C} \bar{B} A) & =P(\bar{C} \mid \bar{B} A) P(\bar{B} \mid A) P(A)=P(\bar{C}) *[1-P(B \mid A)] * P(A) \\
& =0.8 * 0.28 * 0.40=0.0896 \\
P(\bar{C} B \bar{A}) & =P(\bar{C} \mid B \bar{A}) P(B \mid \bar{A}) P(\bar{A})=P(\bar{C}) \frac{P(\bar{A} \mid B) P(B)}{P(\bar{A})} P(\bar{A}) \\
& =[1-P(C)] *[1-P(A \mid B)] * P(B)=0.8 * 0.52 * 0.6=0.2496 \\
P(C \bar{B} \bar{A}) & =P(C \mid \bar{B} \bar{A}) P(\bar{B} \mid \bar{A}) P(\bar{A})=P(C) P(\bar{B} \mid \bar{A}) P(\bar{A})=P(C) P(\bar{A} \bar{B}) \\
& =0.2 * 0.288=0.0576
\end{aligned}
$$

hence,

$$
P(A \bar{B} \bar{C} \cup \bar{A} B \bar{C} \cup \bar{A} \bar{B} C)=0.0896+0.2496+0.0576=0.397
$$

Problem 3.9

Let's define the event
$S=$ the maximum load on a structure (in tons).
a) The PDF is necessary to produce the mode and mean value of S. Differentiating the CDF gives the PDF,

$$
f_{S}(s)= \begin{cases}0 & \text { for } s<0 \\ -\frac{s^{2}}{288}+\frac{s}{24} & \text { for } 0<s \leq 12 \\ 0 & \text { for } s>12\end{cases}
$$

The mode \tilde{s} is where f_{S} has a maximum, hence setting its derivative to

$$
\begin{aligned}
f_{S}^{\prime}(\tilde{s}) & =0 \\
-\frac{\tilde{s}}{144}+\frac{1}{24} & =0 \\
\tilde{s} & =6
\end{aligned}
$$

the mode, \tilde{s}, is equal to 6 .
The mean value is

$$
\mu_{S}=\int_{-\infty}^{\infty} s f_{S}(s) d s=\int_{0}^{12} \frac{s^{2}}{24}-\frac{s^{3}}{288} d s=\left[\frac{s^{3}}{3 * 24}-\frac{s^{4}}{4 * 288}\right]_{0}^{12}=6
$$

b) We have a new event lets define it $R=$ the strength of the structure.

From the PMF it is clear that $P(R=10)=0.7$, and $P(R=13)=0.3$. Dividing the sample space into two regions $R=10$ and $R=13$, the total probability of failure is

$$
\begin{aligned}
P(S>R) & =P(S>R \mid R=10) P(R=10)+P(S>R \mid R=13) P(R=13) \\
& =\left[1-F_{S}(10)\right] * 0.7+\left[1-F_{S}(13)\right] * 0.3 \\
= & {\left[1-\left(-\frac{10^{3}}{864}+\frac{10^{2}}{48}\right)\right] * 0.7+[1-1] * 0.3=0.0519 }
\end{aligned}
$$

Problem 3.11

Let's define the event
$X=$ the size of a crack in a structural weld (in millimeter).
a) In order to sketch the CDF we need the CDF. Recall that $F_{X}(x)=\int_{-\infty}^{\infty} f_{X}(x) d x$ Therefore we integrate the PDF and get

$$
F_{X}(x)= \begin{cases}0 & \text { for } x \leq 0 \\ \frac{x^{2}}{16} & \text { for } 0<x \leq 2 \\ \frac{x}{4}-\frac{1}{4} & \text { for } 2<x \leq 5 \\ 1 & \text { for } x>5\end{cases}
$$

sketches follow:

b) The mean crack size is

$$
E(X)=\int_{0}^{2} x \frac{x}{8} d x+\int_{2}^{5} x \frac{1}{4} d x=\left[\frac{x^{3}}{24}\right]_{0}^{2}+\left[\frac{x^{2}}{8}\right]_{2}^{5}=\frac{71}{24}=2.96(\mathrm{~mm})
$$

c) The probability that a crack will be smaller than 4 mm is

$$
P(X<4)=1-P(X>4)
$$

Where $P(X>4)$ is easily read off from the PDF, sketched in part a, as the area $(5-4)(1 / 4)=$ $1 / 4$, hence

$$
P(X<4)=1-\frac{1}{4}=\frac{3}{4}=0.75
$$

One could also find it the following way

$$
F_{X}(4)=1-\frac{1}{4}=\frac{3}{4}=0.75
$$

d) To determine the median crack size we use the graph of the PDF, f_{X}. A vertical line drawn at the median x_{m} would divide the unit area under f_{X} into two equal halves; the right hand rectangle having area

$$
\begin{array}{r}
0.5=\left(5-x_{m}\right)\left(\frac{1}{4}\right) \\
x_{m}=5-4(0.5)=3(\mathrm{~mm})
\end{array}
$$

Also using the graph of the CDF we get $F_{X}\left(x_{m}\right)=\frac{1}{2}$ which can easily found from the graph $x_{m}=3$ (mm).
e) For part e we have a new event, lets define it.
$Y=$ the number of cracks larger then 4 mm .
Each of the four cracks has $p=0.25$ probability of exceeding 4 mm (as calculated in (c)). To determine the probability that only one of these four cracks is larger than 4 mm one uses binomial distribution. Where $n=4$, and $p=0.25$.

$$
P(Y=1)=\binom{4}{1} p^{1}(1-p)^{(4-1)}=4 * 0.25 * 0.75^{3}=0.422
$$

Problem 3.40

Let's define the event
$X=$ the settlement of a proposed structure (in inches).
The probability that the settlement of a proposed structure will not exceed 2 in . is

$$
P(X \leq 2)=0.95
$$

The coefficient of variation of the settlement is c.o.v. $=0.2$.
If a normal distribution is assumed for the settlement the probability that the proposed structure will settle more then 2.5 in . is

$$
P(X>2.5)=1-\Phi\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)
$$

where
or

$$
\begin{aligned}
& \text { c.o.v. }=\frac{\sigma_{X}}{\mu_{X}}=0.2 \quad \sigma_{X}=0.2 \mu_{X} \\
& P(X \leq 2)=\Phi\left(\frac{2-\mu_{X}}{0.2 \mu_{X}}\right)=0.95
\end{aligned}
$$

$$
\begin{array}{r}
\frac{2-\mu_{X}}{0.2 \mu_{X}}=\Phi^{-1}(0.95)=1.645 \\
\mu_{X}=1.5
\end{array}
$$

hence

$$
P(X>2.5)=1-\Phi\left(\frac{2.5-1.5}{0.2 * 1.5}\right)=1-\Phi(3 . \overline{33})=0.000434
$$

Problem 3.41

Let's define the event
$X=$ the strength of the concrete cylinder (in kips).
The strength of the cylinder is normally distributed as $N(80,20)$ in kips therefore

$$
\mu_{X}=80 \quad \sigma_{X}=20
$$

a) To be a second place winner, X must be above 70 but below 100. The probability of winning second place is

$$
\begin{aligned}
P(70<X<100) & =\Phi\left(\frac{100-80}{20}\right)-\Phi\left(\frac{70-80}{20}\right) \\
& =\Phi(1)-\Phi(-0.5)=\Phi(1)-(1-\Phi(0.5)) \\
& =0.841-0.309=0.532
\end{aligned}
$$

b) If the cylinder shows no sign of distress at a load of 90 kips the probability of winning first place is

$$
\begin{aligned}
P(X>100 \mid X>90) & =\frac{P(X>100 \text { and } X>90)}{P(X>90)}=\frac{P(X>100)}{P(X>90)} \\
& =\frac{1-\Phi\left(\frac{100-80}{20}\right)}{1-\Phi\left(\frac{90-80}{20}\right)}=\frac{1-\Phi(1)}{1-\Phi(0.5)}=\frac{0.159}{0.309}=0.514
\end{aligned}
$$

For part c we need to define a new event
$Y=$ the strength of the new concrete cylinder (in kips).

$$
\begin{aligned}
& \mu_{Y}=1.01 * 80=80.8 \\
& \delta_{Y}=1.5 * \delta_{X}
\end{aligned}
$$

For $\mu_{X}>0$ the c.o.v. is

$$
\delta_{X}=\frac{\sigma_{X}}{\mu_{X}}
$$

Therefore

$$
\begin{aligned}
& \delta_{Y}=1.5 * \delta_{X}=1.5 * \frac{\sigma_{X}}{\mu_{X}}=1.5 * \frac{20}{80}=0.375 \\
& \sigma_{Y}=\delta_{Y} * \mu_{Y}=0.375 * 80.8=30.3
\end{aligned}
$$

c) In order to determine which cylinder is likelier to score a higher strength we need the joint distribution of the event's. Lets define $Z=Y-X$. The probability of Z being larger the zero is

$$
\begin{aligned}
P(Z>0) & =1-P(Z<0) \\
& =\int_{-\infty}^{0} \int_{-\infty}^{0} f_{X Y}(x, y) d x d y=\int_{-\infty}^{0} \int_{-\infty}^{0} f_{X}(x) f_{Y}(y) d x d y \\
& =\Phi\left(\frac{0-\mu_{X}}{\sigma_{X}}\right) * \Phi\left(\frac{0-\mu_{Y}}{\sigma_{Y}}\right) \\
& =\Phi(4) * \Phi(2 . \overline{66})=0.99606072
\end{aligned}
$$

