MAE 108: Solutions HW 3

Problem 1

Ang 8 Tang 2.39
We have
D : Number of defective panels on a given day
A : Shipment accepted on a given day

- $P(D=0)=0.2$
- $P(D=1)=0.5$
- $P(D=2)=0.3$
a)

The shipment is accepted if the supervisor finds at most one defected panel so $P(A)=P(D \leq 1)$ and $P(\bar{A})=P(D=2)$

$$
\begin{aligned}
P(A) & =P(D \leq 1) \\
& =P(D=0)+P(D=1) \\
& =0.2+0.5 \\
& =0.7
\end{aligned}
$$

b)
P (exactly one shipment will be rejected in 5 days)

$$
\begin{aligned}
& =5 * P(D \leq 1)^{4} * P(D=2) \\
& =5 * 0.7^{4} * 0.3 \\
& =0.36
\end{aligned}
$$

c)

The shipment is accepted if the supervisor finds at most one defected panel, however we now take into account that not all defected panel are found. Only 80% of the them are detected and therefore rejected, $P(\bar{A} \mid D=1)$. Therefore our definition of the probability of acceptance of shipment on a given day $P(A)$ changes and is dependent on the number of defective panels detected, in stead of the number of defective panels.
D_{d} : the number of defective panels detected.

Therefore

- $P(\bar{A} \mid D=1)=0.8$
- $P(A)=P\left(D_{d} \leq 1\right)$
- $P(\bar{A})=P\left(D_{d}=2\right)$

$$
P(A)=P(A \mid D=0) P(D=0)+P(A \mid D=1) P(D=1)+P(A \mid D=2) P(D=2)
$$

Keep in mind that A is now dependent on D_{d} when solving for the conditional probabilities and that $\bar{A}: D_{d}=2$

$$
\begin{aligned}
& P(A \mid D=0)=1-P(\bar{A} \mid D=0)=1-0=1 \\
& P(A \mid D=1)=1-P(\bar{A} \mid D=1)=1-0=1
\end{aligned}
$$

This aligns with that there can not be a detection of two defected panels if there are not two defected panels to begin with. However when there are two defected panels we have:

$$
\begin{aligned}
P(A \mid D=2) & =1-P(\bar{A} \mid D=2) \\
& =1-P(\bar{A} \mid D=1) P(\bar{A} \mid D=1)=1-0.8 * 0.8=0.36
\end{aligned}
$$

Hence, $P(A)=0.2+0.5+0.36 * 0.3=0.808$
There are different ways of approaching this. Another approach is:

$$
\begin{aligned}
P(A) & =P\left(D_{d} \leq 1\right) \\
& =P\left(D_{d} \leq 1 \mid D \leq 1\right) * P(D \leq 1)+P\left(D_{d} \leq 1 \mid D=2\right) * P(D=2)
\end{aligned}
$$

By the implicit assumption, $D \leq 1$ implies $D_{d} \leq 1$.
Then, this means that $(D \leq 1) \subset\left(D_{d} \leq 1\right)$ and that

$$
\begin{aligned}
P\left(D_{d} \leq 1 \mid D \leq 1\right) & =P\left(\left(D_{d} \leq 1\right) \cap(D \leq 1)\right) / P(D \leq 1) \\
& =P(D \leq 1) / P(D \leq 1)=1
\end{aligned}
$$

$$
P\left(D_{d} \leq 1 \mid D=2\right)=1-P\left(D_{d}=2 \mid D=2\right)=1-(0.8)^{2}=0.36
$$

Lets put this into the above equation

$$
\begin{aligned}
P(A) & =P\left(D_{d} \leq 1\right) \\
& =P\left(D_{d} \leq 1 \mid D \leq 1\right) * P(D \leq 1)+P\left(D_{d} \leq 1 \mid D=2\right) * P(D=2) \\
& =1 *(P(D=0)+P(D=1))+\left[1-P\left(D_{d}=2 \mid D=2\right)\right] P(D=2) \\
& =0.2+0.5+0.36 * 0.3=0.808
\end{aligned}
$$

Problem 2

Ang \& Tang 2.45
Let A, D, and I denote the respective events that a driver encountering the amber light will accelerate, decelerate, or be indecisive. Let R denote the event that s / he will run the red light.
The given probabilities and conditional probabilities are:

- $P(A)=0.10$
- $P(D)=0.85$
- $P(I)=0.05$
- $P(R \mid A)=0.05$
- $P(R \mid D)=0$
- $P(R \mid I)=0.02$
a)

By the theorem of total probability,

$$
\begin{aligned}
P(R) & =P(R \mid A) P(A)+P(R \mid D) P(D)+P(R \mid I) P(I) \\
& =0.05 * 0.10+0+0.02 * 0.05 \\
& =0.005+0.001 \\
& =0.006
\end{aligned}
$$

b) The desired probability is $P(A \mid R)$, which can be found by Bayes' Theorem as

$$
\begin{aligned}
P(A \mid R) & =\frac{P(R \mid A) P(A)}{P(R)} \\
& =\frac{0.05 * 0.10}{0.006} \\
& =0.833
\end{aligned}
$$

c) Let V mean there exists a vehicle waiting on the other street,

- $P(V)=0.6$
- $P(\bar{V})=0.40$

Let C denote that the driver in the other vehicle is cautious,

- $P(C)=0.8$
- $P(\bar{C})=0.20$

The probability of collision is:

$$
\begin{aligned}
& P(\text { collision })=P(\text { collision } \mid V) P(V)+P(\text { collision } \mid \bar{V}) P(\bar{V}) \\
& \begin{aligned}
P(\text { collision } \mid V) & =P(\text { collision } \mid C) P(C)+P(\text { collision } \mid \bar{C}) P(\bar{C}) \\
& =(1-0.95) * 0.80+(1-0.80) * 0.20 \\
& =0.05 * 0.80+0.20 * 0.20 \\
& =0.08 \\
P(\text { collision } \mid \bar{V}) & =0
\end{aligned} \\
& \begin{array}{l}
\text { }
\end{array} \\
& \\
&
\end{aligned}
$$

Hence,

$$
\begin{aligned}
P(\text { collision }) & =P(\text { collision } \mid V) P(V)+P(\text { collision } \mid \bar{V}) P(\bar{V}) \\
& =0.08 * 0.60+0 \\
& =0.048
\end{aligned}
$$

d) 100,000 vehicles $* 5 \%=5000$ vehicles are expected to encounter the yellow light annually. Out of these 5000 vehicles, 0.6% (i.e. 0.006) are expected to run a red light, i.e. $5000 * 0.006=30$ vehicles. These 30 dangerous vehicles have 0.048 chance of getting into a collision (i.e. accident), hence 30^{*} $0.048=1.44$ accidents caused by dangerous vehicles can be expected at the intersection per year

Problem 3

Ang 6 Tang 2.47
Let D denote difficult foundation problem, F denote that the project is in Ford County, I denote that the project in Iroquois County, and C denote a project in Champaign County.

$$
\begin{aligned}
& P(D)=2 / 3 \\
& P(F)=1 / 3=0.333 \\
& P(I)=2 / 5=0.4 \\
& P(D \mid I)=1.0 \\
& P(D \mid F)=0.5
\end{aligned}
$$

a)

$$
\begin{aligned}
P(F \bar{D}) & =P(\bar{D} \mid F) P(F) \\
& =0.5 * 0.333=0.167
\end{aligned}
$$

b)

We are asked to find the following:

$$
P(C \bar{D})=P(\bar{D} \mid C) P(C)
$$

Therefore we need:

$$
\begin{aligned}
P(\bar{D} \mid C) & =P(\bar{D})=1-P(D)=1 / 3 \\
P(C) & =1-P(F)-P(I) \\
& =1-0.333-0.4=0.267
\end{aligned}
$$

Hence,

$$
P(C \bar{D})=P(\bar{D} \mid C) P(C)=1 / 3 * 0.267=0.089
$$

c)

$$
P(I \mid \bar{D})=\frac{P(\bar{D} \mid I) P(I)}{P(\bar{D})}=\frac{0 * 0.4}{0.667}=0
$$

Problem 4

Ang ${ }^{63}$ Tang 2.51

Let C, S denote shortage of cement and steel bars respectively. The probabilities and condition probability are:

- $P(C)=0.1$
- $P(S)=0.05$
- $P(S \mid \bar{C})=0.5 * 0.05=0.025$
a)

$$
\begin{aligned}
& P(S \cup C)=P(S)+P(C)-P(C \mid S) P(S) \\
& P(\bar{C} \mid S)=\frac{P(S \mid \bar{C}) P(\bar{C})}{P(S)}=\frac{0.025 * 0.9}{0.05}=0.45 \\
& P(C \mid S)=1-P(\bar{C} \mid S)=0.55 \\
& P(S \cup C)=0.05+0.1-0.55 * 0.05=0.1225
\end{aligned}
$$

b)

$$
\begin{aligned}
P(C \bar{S} \cup \bar{C} S) & =P(C \bar{S})+P(\bar{C} S) \\
& =P(C \cup S)-P(C S) \text { from Venn diagram } \\
& =0.1225-P(C \mid S) P(S) \\
& =0.1225-0.55 * 0.05 \\
& =0.095
\end{aligned}
$$

c)

$$
P(S \mid S \cup C)=\frac{P(S(S \cup C))}{P(S \cup C)}=\frac{P(S)}{P(S \cup C)}=\frac{0.05}{0.1225}=0.408
$$

For part d) and e) we have additional information.
Let U denote that the material was transported by $\operatorname{tr} \mathbf{U c k}, A$ denote that the material is transported by $\operatorname{tr} \mathbf{A i n}$, and T denote that the delivery was on time.

- $P(U)=0.6$
- $P(A)=0.4$
- $P(T \mid U)=0.75$
- $P(T \mid A)=0.9$
d)

$$
\begin{aligned}
P(T) & =P(T \mid U) P(U)+P(T \mid A) P(A) \\
& =0.75 * 0.6+0.9 * 0.4 \\
& =0.81
\end{aligned}
$$

e)

$$
\begin{aligned}
P(U \mid \bar{T}) & =\frac{P(\bar{T} \mid U) P(U)}{P(\bar{T})} \\
& =\frac{[1-P(T \mid U)] * P(U)}{[1-P(T)]} \\
& =\frac{0.25 * 0.6}{[1-0.81]} \\
& =0.7895
\end{aligned}
$$

Problem 5

Ang ${ }^{6}$ Tang 3.1
Total time $T=T_{A}+T_{B}$ its range is $(3+4=7)$ to $(5+6=11)$ Divide the
sample space into $A=3, A=4$ and $A=5$.

$$
\begin{aligned}
P(T=7) & =\sum_{n=3,4,5} P(T=7 \mid A=n) * P(A=n) \\
& =\sum_{n=3,4,5} P(B=7-n) * P(A) \\
& =P(B=4) * P(A=3) \\
& =0.2 * 0.3=0.06
\end{aligned}
$$

Similarly

$$
\begin{aligned}
P(T=8) & =P(B=5) * P(A=3)+P(B=4) * P(A=4) \\
& =0.6 * 0.3+0.2 * 0.5=0.28 \\
P(T=9) & =P(B=6) * P(A=3)+P(B=5) * P(A=4)+P(B=4) * P(A=5) \\
& =0.2 * 0.3+0.6 * 0.5+0.2 * 0.2=0.4 \\
P(T=10) & =P(B=6) * P(A=4)+P(B=5) * P(A=5) \\
& =0.2 * 0.5+0.6 * 0.2=0.22 \\
P(T=11) & =P(B=6) * P(A=5) \\
& =0.2 * 0.2=0.04
\end{aligned}
$$

Lets check if it adds up:

$$
0.06+0.28+0.4+0.22+0.04=1
$$

Problem 6

Ang ξ^{3} Tang 3.3
a) Applying the normalization condition we get:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{X}(x) d x=1 \\
& \int_{0}^{6} c\left(x-\frac{x^{2}}{6}\right) d x=1 \\
& c\left[\frac{x^{2}}{2}-\frac{x^{3}}{18}\right]_{0}^{6}=1 \\
& c=\frac{18}{9 * 36-6^{3}}=1 / 6
\end{aligned}
$$

b) To avoid repeating integration, let's work with the Cumulative Distribution Function of X, which is

$$
F_{X}(x)= \begin{cases}0 & \text { for } s \leq 0 \\ \frac{1}{6}\left[\frac{x^{2}}{2}-\frac{x^{3}}{18}\right]=\frac{9 x^{2}-x^{3}}{108} & \text { for } 0<x \leq 6 \\ 0 & \text { for } s>12\end{cases}
$$

Since overflow already occurred, the given event is $X>4(\mathrm{~cm})$, hence the conditional probability

$$
\begin{aligned}
P(X<5 \mid X>4) & =\frac{P(X<5 \text { and } X>4)}{P(X>4)}=\frac{P(4<X<5)}{1-P(X \leq 4)} \\
& =\frac{F_{X}(5)-F_{X}(4)}{1-F_{X}(4)}=\frac{\left(9 * 5^{2}-5^{3}\right)-\left(9 * 4^{2}-4^{3}\right)}{108-\left(9 * 4^{2}-4^{3}\right)} \\
& =\frac{100-80}{108-80}=\frac{5}{7}=0.714
\end{aligned}
$$

c) Let C denote completion of pipe replacement by the next storm, where $P(C)=0.06$. If C indeed occurs, overflow means $X>5$, whereas if C did not occur then overflow would correspond to $X>4$. Hence the total probability of overflow is

$$
\begin{aligned}
P(\text { overflow }) & =P(\text { overflow } \mid C) P(C)+P(\text { overflow } \mid \bar{C}) P(\bar{C}) \\
& =P(X>5) * 0.6+P(X>4) *(1-0.6) \\
& =\left[1-F_{X}(5)\right] * 0.6+\left[1-F_{X}(4)\right] * 0.4 \\
& =(1-100 / 108) * 0.6+(1-80 / 108) * 0.4=0.148
\end{aligned}
$$

Problem 7

Ang 8 Tang 3.5

Let F be the final cost (a random variable), and C be the estimated cost (a constant), hence

$$
X=F / C
$$

is a random variable.
a) To satisfy the normalization condition,

$$
\begin{aligned}
& \int_{1}^{a} \frac{3}{x^{2}} d x=\left[\frac{-3}{x}\right]_{1}^{a}=3-\frac{3}{a}=1 \\
& a=3 / 2=1.5
\end{aligned}
$$

b) The given event asked for is F exceeds C by more then 25%. That can be written as:

$$
F>1.25 * C
$$

or

$$
F / C>1.25
$$

It follows that its probability is:

$$
\begin{aligned}
P(X>1.25) & =\int_{1.25}^{\infty} f_{X}(x) d x \\
& =\int_{1.25}^{1.5} \frac{3}{x^{2}} d x=\left[\frac{-3}{x}\right]_{1.25}^{1.5} \\
& =-2-(-2.4)=0.4
\end{aligned}
$$

c) The mean

$$
E(X)=\int_{1}^{1.5} x \frac{3}{x^{2}} d x=[3 \ln x]_{1}^{1.5}=1.216
$$

while

$$
E\left(X^{2}\right)=\int_{1}^{1.5} x^{2} \frac{3}{x^{2}} d x=3(1.5-1)=1.5
$$

with these, we can determine the variance

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =1.5-1.216395324^{2}=0.020382415 \\
& \sigma_{X}=\sqrt{0.020382415}=0.143
\end{aligned}
$$

Problem 8

Ang \mathfrak{E} Tang 3.7
a) The event roof failure in a given year means that the annual maximum snow load exceeds the design value, i.e. $X>30$, whose probability is

$$
\begin{aligned}
P(X>30) & =1-P(X \leq 30)=1-F_{X}(30) \\
& =1-\left[1-(10 / 30)^{4}\right] \\
& =(1 / 3)^{4}=1 / 81=0.0123=p
\end{aligned}
$$

Now for the first failure to occur in the 5th year, there must be four years of non-failure followed by one failure. We already found the value of failure, p, and therefore have the value of non-failure, $1-p$. The probability of such an event is:

$$
(1-p)^{4} p=[1-(1 / 81)]^{4} *(1 / 81)=0.0117
$$

b) Among the next 10 years, let Y count the number of years in which failure occurs. Y follows a binomial distribution with $\mathrm{n}=10$ and $\mathrm{p}=1 / 81$, hence

$$
\begin{aligned}
P(Y<2) & =P(Y=0)+P(Y=1) \\
& =(1-p)^{n}+n(1-p)^{n-1} p \\
& =(80 / 81)^{10}+10 *(80 / 81)^{9} *(1 / 81) \\
& =0.994
\end{aligned}
$$

