MAE108 S2014 - Homework 2 Solutions

Problem 2.4

Let's define $\Omega_{1}=\{6,7,8\} \mathrm{ft} /$ day as the set of possible inflow rates and $\Omega_{2}=\{5,6,7\} \mathrm{ft} /$ day as the set of possible outflow rates.
a) The possible combinations (inflow,outflow) of water in a given day are the following pairs: $(6,5),(6,6),(6,7),(7,5),(7,6),(7,7),(8,5),(8,6),(8,7) \mathrm{ft} /$ day .
b) The possible changes in water level is given by the set $C=\left\{y-x \mid y \in \Omega_{1}, x \in \Omega_{2}\right\}$, so $C=\{-1,0,1,2,3\} \mathrm{ft} /$ day. If the water level in the tank is 7 ft from the bottom at the start of a day, then at the end of the day there can be $6,7,8,9$, or 10 ft of water in the tank.
c) There are 3 combinations of inflow and outflow that result in the tank having at least 9 ft of water at the end of the day, these combinations are $(7,5),(8,6),(8,5) \mathrm{ft} /$ day. If the amounts of inflow and outflow of water are both equally likely and there are 9 total combinations, then the probability of this happening is $\frac{3}{9}=\frac{1}{3}$.

Problem 2.6

We will define the following events:
$A_{1}=$ lane A_{1} requires major resurfacing in the next 2 years.
$A_{2}=$ lane A_{2} requires major resurfacing in the next 2 years.
$B_{1}=$ lane B_{1} requires major resurfacing in the next 2 years.
$B_{2}=$ lane B_{2} requires major resurfacing in the next 2 years.
We know $P\left(A_{1}\right)=0.05, P\left(A_{2}\right)=0.05, P\left(B_{1}\right)=0.15, P\left(B_{2}\right)=0.15, P\left(A_{2} \mid A_{1}\right)=0.15$, $P\left(A_{1} \mid A_{2}\right)=0.15, P\left(B_{2} \mid B_{1}\right)=0.45$, and $P\left(B_{1} \mid B_{2}\right)=0.45$.
a) The probability that route A will require major resurfacing in the next two years is given by

$$
\begin{aligned}
P\left(A_{1} \cup A_{2}\right) & =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} P_{2}\right) \\
& =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \mid A_{2}\right) P\left(A_{2}\right) \\
& =0.05+0.05-0.15 * 0.05 \\
& =0.0925 .
\end{aligned}
$$

The probability that route B will require major resurfacing in the next two years is given by

$$
\begin{aligned}
P\left(B_{1} \cup B_{2}\right) & =P\left(B_{1}\right)+P\left(B_{2}\right)-P\left(B_{1} B_{2}\right) \\
& =P\left(B_{1}\right)+P\left(B_{2}\right)-P\left(B_{1} \mid B_{2}\right) P\left(B_{2}\right) \\
& =0.15+0.15-0.45 * 0.15 \\
& =0.2325 .
\end{aligned}
$$

b) Assuming that the need for resurfacing in routes A and B are indepedent, the probability that the road between cities 1 and 3 needs resurfacing is given by

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup B_{1} \cup B_{2}\right) & =P\left(A_{1} \cup A_{2}\right)+P\left(B_{1} \cup B_{2}\right)-P\left(\left[A_{1} \cup A_{2}\right] \cap\left[B_{1} \cup B_{2}\right]\right) \\
& =P\left(A_{1} \cup A_{2}\right)+P\left(B_{1} \cup B_{2}\right)-P\left(A_{1} \cup A_{2}\right) P\left(B_{1} \cup B_{2}\right) \\
& =0.0925+0.2325-0.0925 * 0.2325 \\
& =0.304 .
\end{aligned}
$$

Problem 2.8

We will define the following events:
$E_{1}=$ there will be no rain.
$E_{2}=$ production of concrete material at the job site is feasible.
$E_{3}=$ supply of premixed concrete is available.
We know $P\left(E_{1}\right)=0.8, P\left(E_{2}\right)=0.7, P\left(E_{3}\right)=0.95, P\left(E_{3} \mid \bar{E}_{2}\right)=0.6$, and E_{1} is statistically independent of E_{2} and E_{3}.
a) We know $A=$ casting of concrete elements can be performed on a given day. We can write $A=E_{1}\left(E_{2} \cup E_{3}\right)$, because we require no rain, and either on-site production or premixed concrete (or both).

$$
B=\overline{E_{1}\left(E_{2} \cup E_{3}\right)}=\bar{E}_{1} \cup\left(\bar{E}_{2} \bar{E}_{3}\right) .
$$

b) The probability of event B is given by

$$
\begin{aligned}
P(B) & =P\left(\bar{E}_{1} \cup\left(\bar{E}_{2} \bar{E}_{3}\right)\right) \\
& =P\left(\bar{E}_{1}\right)+P\left(\bar{E}_{2} \bar{E}_{3}\right)-P\left(\bar{E}_{1} \bar{E}_{2} \bar{E}_{3}\right) \\
& =\left(1-P\left(E_{1}\right)\right)+P\left(\bar{E}_{3} \mid \bar{E}_{2}\right) P\left(\bar{E}_{2}\right)-P\left(\bar{E}_{1}\right) P\left(\bar{E}_{2} \bar{E}_{3}\right) \\
& =\left(1-P\left(E_{1}\right)\right)+\left(1-P\left(E_{3} \mid \bar{E}_{2}\right)\right)\left(1-P\left(E_{2}\right)\right)-\left(1-P\left(E_{1}\right)\right)\left(1-P\left(E_{3} \mid \bar{E}_{2}\right)\right)\left(1-P\left(E_{2}\right)\right) \\
& =(1-0.8)+(1-0.6)(1-0.7)-(1-0.8)(1-0.6)(1-0.7) \\
& =0.296 .
\end{aligned}
$$

c) The probability that casting concrete can be performed given production of concrete is not feasible is

$$
\begin{aligned}
P\left(A \mid \bar{E}_{2}\right) & =P\left(E_{1}\left(E_{2} \cup E_{3}\right) \mid \bar{E}_{2}\right) \\
& =\frac{P\left(E_{1}\left(E_{2} \cup E_{3}\right) \bar{E}_{2}\right)}{P\left(\bar{E}_{2}\right)} \\
& =\frac{P\left(E_{1} \bar{E}_{2} E_{3}\right)}{P\left(\bar{E}_{2}\right)}=\frac{P\left(E_{1}\right) P\left(E_{3} \mid \bar{E}_{2}\right) P\left(\bar{E}_{2}\right)}{P\left(\bar{E}_{2}\right)} \\
& =0.8 * 0.6=0.48 .
\end{aligned}
$$

Problem 2.10

We will define the following events:
$A=$ contractor A is available.
$B=$ contractor B is available.
We know $P(A)=0.6, P(B)=0.8$, and $P(A \cup B)=0.9$.
a) The probability that both subcontractors will be available is $P(A B)$, which can be obtained from

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A B) \\
P(A B) & =P(A)+P(B)-P(A \cup B) \\
& =0.6+0.8-0.9=0.5 .
\end{aligned}
$$

b) The probability that B is available given A is not available is given by

$$
\begin{aligned}
P(B \mid \bar{A}) & =\frac{P(B)}{P(\bar{A})} P(\bar{A} \mid B) \\
& =\frac{P(B)}{1-P(A)}(1-P(A \mid B)) \\
& =\frac{P(B)}{1-P(A)}\left(1-\frac{P(A B)}{P(B)}\right) \\
& =\frac{0.8}{1-0.6}\left(1-\frac{0.5}{0.8}\right)=0.75 .
\end{aligned}
$$

c) i) For A and B to be statistically independent, $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$. However, we can see that $P(B \mid A)=0.75$ while $P(B)=0.8$.
ii) For A and B to be mutually exclusive, $P(A B)=0$. Because $P(A B)=0.5, A$ and B are not mutually exclusive.
iii) For A and B to be collectively exhaustive, $P(A \cup B)=1$. Because $P(A \cup B)=0.9, A$ and B are not collectively exhaustive.

Problem 2.12

We will define the following events:
$A=$ flooding of town A in a given year.
$B=$ flooding of town B in a given year.
$C=$ flooding of town C in a given year.
We know $P(A)=0.2, P(B)=0.3, P(C)=0.1, P(B \mid C)=0.6, P(A \mid B C)=0.8$, and $P(\bar{A} \bar{B} \mid \bar{C})=0.9$.
a) The probability that a given year is a disaster is given by

$$
\begin{aligned}
P(A B C) & =P(A \mid B C) P(B C) \\
& =P(A \mid B C) P(B \mid C) P(C)=0.8 * 0.6 * 0.1=0.048
\end{aligned}
$$

b) The probability that C floods given B floods is given by

$$
\begin{aligned}
P(C \mid B) & =\frac{P(C)}{P(B)}(P(B \mid C)) \\
& =\frac{0.1}{0.3}(0.6)=0.2 .
\end{aligned}
$$

c) The probability that at least one town is flooded is given by

$$
\begin{aligned}
P(A \cup B \cup C) & =1-P(\overline{A \cup B \cup C}) \\
& =1-P(\bar{A} \bar{B} \bar{C})=1-P(\bar{A} \bar{B} \mid \bar{C}) P(\bar{C}) \\
& =1-0.9 *(1-0.1)=0.19 .
\end{aligned}
$$

Problem 2.14

a) We will define A as an event where an accident will occur at a given crossing next year. Assuming the likelihood of a crash at each crossing is the same and given an average of 13 accidents per year, its probability is

$$
\begin{aligned}
P(A) & =1-P(\bar{A}) \\
& =1-\left(\frac{999}{1000}\right)^{13}=0.0129 .
\end{aligned}
$$

Note that this is very close to $0.0013=\frac{13}{1000}$, because there is a very small chance that a given crossing will have more than one accident.
b) The probability of a struck by train accident occuring during daytime is

$$
P(S \mid D)=\frac{60}{90}=\frac{2}{3} .
$$

c) We will denote F as a fatal accident.

$$
\begin{aligned}
P(F) & =P(F \mid R) P(R)+P(F \mid S) P(S) \\
& =0.5 * \frac{50}{130}+0.8 * \frac{80}{130}=0.685 .
\end{aligned}
$$

d) i) D and R are not mutually exclusive, because $P(D R)>0$.
ii) D and R are not statistically independent, because $P(R \mid D)=\frac{30}{90} \neq P(R)$, which is $\frac{50}{130}$.

Problem 2.16

We will define the following events:
$E_{1}=$ Monday is a rainy day.
$E_{2}=$ Tuesday is a rainy day.
$E_{3}=$ Wednesday is a rainy day.
a) We know

1) $P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=0.3$.
2) $P\left(E_{2} \mid E_{1}\right)=P\left(E_{3} \mid E_{2}\right)=0.5$.
3) $P\left(E_{3} \mid E_{1} E_{2}\right)=0.2$.
b) The probability of rain on Monday and Tuesday is

$$
\begin{aligned}
P\left(E_{1} E_{2}\right) & =P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
& =0.5 * 0.3=0.15 .
\end{aligned}
$$

c) The probability that Wednesday is the only dry day of the three days is

$$
\begin{aligned}
P\left(E_{1} E_{2} \bar{E}_{3}\right) & =P\left(\bar{E}_{3} \mid E_{1} E_{2}\right) P\left(E_{1} E_{2}\right) \\
& =\left(1-P\left(E_{3} \mid E_{1} E 2\right)\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)=(1-0.2)(0.5)(0.3)=0.12 .
\end{aligned}
$$

d) The probability of at least one rainy day is

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup E_{3}\right) & =P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)-P\left(E_{1} E_{2}\right)-P\left(E_{1} E_{3}\right)-P\left(E_{2} E_{3}\right)+P\left(E_{1} E_{2} E_{3}\right) \\
& =0.3+0.3+0.3-0.15-0.15-0.075+0.03=0.56 \\
P\left(E_{1} E_{3}\right) & =P\left(E_{3} \mid E_{1}\right) P\left(E_{1}\right)=\left(P\left(E_{3} \mid E_{2} E_{1}\right) P\left(E_{2} \mid E_{1}\right)+P\left(E_{3} \mid \bar{E}_{2} E_{1}\right) P\left(\bar{E}_{2} \mid E_{1}\right)\right) P\left(E_{1}\right) \\
& =(0.2 * 0.5+0.3 * 0.5)(0.3)=0.075 \\
P\left(E_{2} E_{3}\right) & =P\left(E_{3} \mid E_{2}\right) P\left(E_{2}\right)=0.5 * 0.3=0.15 \\
P\left(E_{1} E_{2} E_{3}\right) & =P\left(E_{3} \mid E_{1} E_{2}\right) P\left(E_{1} E_{2}\right)=0.2 * 0.15=0.03
\end{aligned}
$$

Problem 2.18

We will define the following events:
$E=$ excessive settlement over a building's lifetime
$C=$ Collapse of the superstructure over a building's lifetime.
We know $P(E)=0.10, P(C)=0.05$, and $P(C \mid E)=0.20$.
a) Probability of building failure is

$$
\begin{aligned}
P(E \cup C) & =P(E)+P(C)-P(C E) \\
& =P(E)+P(C)-P(C \mid E) P(E)=0.10+0.05-0.20 * 0.10=0.13 .
\end{aligned}
$$

b) The probability of both failure modes given some type of failure is

$$
\begin{aligned}
P(E C \mid E \cup C) & =\frac{P(E C) \cap(E \cup C)}{P(E \cup C)} \\
& =\frac{P(C \mid E) P(E)}{P(E \cup C)}=\frac{0.20 * 0.10}{0.13}=0.154 .
\end{aligned}
$$

c) The probability that only one mode will fail over the life of the building is

$$
\begin{aligned}
P(E \bar{C} \cup \bar{E} C) & =P(\bar{C} \mid E) P(E)+P(\bar{E} \mid C) P(C) \\
& =(1-P(C \mid E)) P(E)+(1-P(E \mid C)) P(C) \\
& =(1-P(C \mid E)) P(E)+\left(1-\frac{P(E)}{P(C)} P(C \mid E)\right) P(C) \\
& =(1-0.20) 0.10+\left(1-\frac{0.10}{0.05} 0.20\right) 0.05=0.11 .
\end{aligned}
$$

