MAE108 S2014 - Homework 1 Solutions

Problems 1 and 2

Problem 3 - Exercise 2.1

1. The possibility (sample) space Ω_{1} of his travel times from city A to city B is $\{6,7,9,10,11\}$ hours, this is the set of times that it may take him to travel from A to B. The possibility space Ω_{2} of his travel times from A to C is $\{8,9,10,11,12,13,14\}$ hours.
2. The sample space of his travel cost from A to C is the set of total possible costs he can pay to get from city A to C, it is $\{850,1500\}$ dollars.
3. If $T=$ travel time from A to C and $S=$ travel cost from A to C, then the sample space of T and S contains all possible combinations of travel time with travel cost from A to C. It is the following set:
$\{(8 h, 1500 \$),(9 h, 1500 \$),(10 h, 1500 \$),(11 h, 850 \$),(12 h, 850 \$),(13 h, 850 \$),(14 h, 850 \$)\}$.

Problem 4-Exercise 2.2

1. Pier 1 settles at x between 2 and 5 cm , and Pier 2 settles at y between 4 and 10 cm . The differential settlement is $d=y-x$, and by physical considerations we know $x \leq y$. The minimum differential is $d=0 \mathrm{~cm}$ when $y=x$ and the maximum is $d=8 \mathrm{~cm}$ when $x=2$ cm and $y=10 \mathrm{~cm}$. Therefore the sample space of this differential settlement between Pier 2 and Pier 1 is
$\{d \in \mathbb{R} \mid 0 \leq d \leq 8 \mathrm{~cm}\}$.
Note that we are interested in the absolute difference.
2. Assuming that the differential settlements are equally likely in the given sample space, the probability that a differential settlement lies in some interval is equal to the length of the desired interval divided by the total interval length. So the probability that d is between 3 and 5 cm is $\frac{5-3}{8-0}=\frac{1}{4}$.
