MAE 108 - Probability and Statistical Methods for Engineers - Spring 2013

 Midterm \# 2 - May 24, 201250 minutes, open book, open notes, calculator allowed, no cell phones or computers.
Write your answers directly on the exam. 40 points total.
The exam is $\mathbf{5}$ pages long. Justify all your answers.

NAME:

EXAM GRADE:

(1) (10 points) A company receives 60% of its orders over the internet. The orders are statistically independent from each other. Within a collection of 6 independently placed orders, what is:
(a) The probability that between 2 and 4 of the orders are received over the internet?
(3 points) Solution: We clearly have a Bernoulli sequence with $p=0.6$ and $n=6$. In this question we are asked to compute $P(2 \leq X \leq 4)=P(X=2)+P(X=3)+P(X=4)=$ $\frac{6!}{2!4!} 0.6^{2} 0.4^{4}+\frac{6!}{3!3!} 0.6^{3} 0.4^{3}+\frac{6!}{4!2!} 0.6^{4} 0.4^{2}=0.6^{2} 0.4^{2}\left[15 \times 0.4^{2}+20 \times 0.6 \times 0.4+15 \times 0.6^{2}\right]=72.6 \%$
(b) The probability that at most 4 of the orders are received over the internet?
(2 points) Solution: $P(X \leq 4)=1-P(X=5)-P(X=6)=1-6 \times 0.6^{5} \times 0.4-0.6^{6}=76.7 \%$
(c) The probability that the fifth order received is the first internet order?
(3 points) Solution: This is the probability that the first occurrence of an internet order is at the fifth order, and thus $P=0.4^{4} \times 0.6=1.53 \%$
(d) The probability that there are no internet orders in the last 3 orders given that we know there are no internet orders in the first 3.
(2 points) Solution: The trials in a Bernoulli sequence are statistically independent so what happens in the first 3 orders is irrelevant to the last three. The probability is thus the same as the probability to have no internet orders in the last three orders, which is $P=0.4^{3}=6.4 \%$.
(2) (10 points) The arrival times of patients in an emergency room (ER) follow a Poisson process with an average of 1.8 new patients per hour.
(a) What is the expected value of the time between two arrivals in the ER?
(3 points) Solution: We have a Poisson process with $\nu=1.8$. Here we are asked about the recurrence time, T. So $E(T)=\frac{1}{\nu}=0.55$ hour ≈ 33 minutes.
(b) What is the probability that at least 2 patients arrive in the ER within a 2-hour period?
(4 points) Solution: Let us call X the number of patients. We want to compute $P\left(X_{2} \geq 2\right)=$ $1-P(0)-P(1)$. For each of these we have to apply the Poisson formula with $\nu t=1.8 \times 2=3.6$ and we find $P\left(X_{2} \geq 2\right)=1-e^{-3.6}-3.6 e^{-3.6} \approx 87.4 \%$.
(c) What is the probability that there is more than one hour between two arrivals in the ER?
(3 points) Solution: This is a question regarding the recurrence time. We are asked to compute $P(T>1)$. This is the same as the probability that there are no arrivals within a one-hour window, and thus $P(T>1)=P\left(X_{1}=0\right)=e^{-1.8} \approx 16.5 \%$.
(3) (10 points)

A continuous random variable, X, has a constant probability distribution function (pdf) on the interval $[a, b]$ (and the pdf is zero outside that interval).
(a) Determine the standard deviation, σ, for this random variable as a function of a and b.
[Hint: the problem statement allows you to determine the value for the pdf.]
(6 points) Solution: We need to determine the mean value of X and its variance. Since the pdf is constant and it has to have integral 1 , we necessarily have $f_{X}=\frac{1}{b-a}$. To get the mean we have to compute

$$
E(X)=\int_{a}^{b} \frac{x}{b-a} d x=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{b+a}{2}
$$

To compute the variance we first need to calculate the mean of X^{2} and we have

$$
E\left(X^{2}\right)=\int_{a}^{b} \frac{x^{2}}{b-a} d x=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

therefore the variance is given by

$$
\operatorname{Var}(X)=\frac{b^{2}+a b+a^{2}}{3}-\left(\frac{b+a}{2}\right)^{2}=\frac{4\left(b^{2}+a b+a^{2}\right)-3\left(a^{2}+2 a b+b^{2}\right)}{12}=\frac{(b-a)^{2}}{12}
$$

and the result for the standard deviation is

$$
\sigma=\sqrt{\operatorname{Var}(x)}=\frac{b-a}{2 \sqrt{3}}
$$

(b) What is the probability for the random variable to be within exactly one standard deviation from the mean?
(4 points) Solution: Since the pdf is constant the probability is simply the size of the interval over the size of the sample space. The set of values of X which are within 1 standard deviation from the mean is of size 2σ. The size of the sample space is $b-a$ therefore the probability is $1 / \sqrt{3} \approx 57.7 \%$
(4) (10 points) [Harder] You are investing your money in mutual funds and have decided to split the money among 2 funds, A and B . If $\$ \mathrm{x}$ is invested in fund A , its worth after one year is a normal distribution with mean $\mu_{A}=1.05 x$ and variance $\sigma_{A}=0.02 x^{2}$. If instead $\$ \mathrm{x}$ is invested in fund B , its net worth after one year is a normal distribution with mean $\mu_{B}=1.05 x$ and variance $\sigma_{B}=0.03 x^{2}$. Suppose you are interested in investing a total of $\$ 1000$, which you are splitting with $\$ \mathrm{y}$ invested in fund A and $\$(1000-\mathrm{y})$ invested in funds B. Assume that both funds are statistically independent. [Hint: you will need to recall the results seen in Chapter 4 about the sum of two normal distributions]
(a) What is the expected value of the total worth of your investment after one year?
(2 points) Solution: Let us denote by M your total amount of money, X_{A} the normal variable from fund A and X_{B} that from fund B . We have $M=X_{A}+X_{B}$ and thus $E(M)=E\left(X_{A}\right)+E\left(X_{B}\right)=$ $1.05 y+1.05(1000-y)=\$ 1,050$.
(b) What is the variance of the total worth of your investment after one year? (no need to expand your answer)
(2 points) Solution: Since $M=X_{A}+X_{B}$ we can apply the formula for the variance of the sum of 2 independent variables, and find $\operatorname{Var}(M)=\operatorname{Var}\left(X_{A}\right)+\operatorname{Var}\left(X_{B}\right)=0.02 y^{2}+0.03(1000-y)^{2}$.
(c) What is the value of y which minimizes the variance of the total worth of your investment after one year?
(3 points) Solution: To find the minimum of $\operatorname{Var}(M)$ we take its derivative with respect to y and find that the derivative is $d[\operatorname{Var}(M)] / d y=2[0.02 y-0.03(1000-y)]$ which is zero when $y=600$.
(d) If you adopt the value of y determined in question (c), what is the probability that after one year the total worth of your investment is more than $\$ 1,110$?
[Hint: you will need to use the table in Appendix A]
(3 points) Solution: If we take $y=600$ then the variance of M is 12000 , and thus $M=N(1050, \sqrt{12000})=$ $N(1050,109.5)$ (M is the sum of 2 normal variables and is thus normally distributed). We want to compute $P(M \geq 1110)=1-\Phi\left(\frac{1110-1050}{109.5}\right)=1-\phi(0.55) \approx 29 \%$.

