MAE108: Probability and Statistical Methods for Mechanical and Environmental Engineering Midterm 1

To receive full credit you have to provide a detailed explanation of your answers.

1. (20 points) Four students in this class (whose names are A, B, C, and D) decided to follow their instructor's advice and prepare for a midterm together. They decided that two of them would work on a problem and then report their solution to the group. These two lucky students are to be selected at random by drawing names from a hat.
(i) Write down a sample space of this selection. (5 pts)
(ii) Assuming that all outcomes are equally likely (i.e., in the absence of cheating with the hat), what is the probability that student A will be chosen to work on the problem? ($\mathbf{1 5} \mathbf{~ p t s}$)

Solution:

(i) The sample space consists of six possible pairs of students: $\{\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}, \mathrm{CD}\}$
(ii) Student A appears in 3 out of 6 possible pairs. Hence the probability of her working on the problem is $3 / 6=0.5$.
2. ($\mathbf{3 0}$ points) An electrical circuit in Figure 1 consists of two components a and b. Since these components are connected in parallel, the circuit keeps working as long as at least one component remains operational. A reliability database suggests that the probability of component a being operational is 0.99 , the probability of component b being operational is 0.98 , and the probability of the two components being simultaneous operational is 0.9702 .
(i) What is the probability of finding the circuit operational? ($\mathbf{1 5} \mathbf{~ p t s)}$
(ii) What is the probability that the two components fail simultaneously? ($\mathbf{1 5} \mathbf{~ p t s)}$

Figure 1: An electrical circuit consisting of two components a and b, which are connected in parallel.

Solution: Let A denote an event "component a is working"; its probability is $P(A)=0.99$. Let B denote an event "component b is working"; its probability is $P(B)=0.98$. The probability of the two components working at the same time is $P(A \cap B)=0.9702$.
(i) The circuit is operational if either one or both components are operational. This corresponds to event $A \cup B$, whose probability is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.99+0.98-0.9702=0.9998 .
$$

(ii) Event "the two components fail simultaneously" is written as $\bar{A} \cap \bar{B}$. Its probability is

$$
P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)=1-0.9998=0.0002
$$

3. (50 points) A full deck of playing cards consists of 52 standard cards.
(i) Determine the probability of drawing a queen on the first try. ($\mathbf{1 0} \mathbf{~ p t s) ~}$
(ii) Determine the probability of drawing two queens in two consecutive tries with replacement. The latter means that you put the card you draw in the first try back into the deck before drawing the second time. ($\mathbf{1 5} \mathbf{~ p t s}$)
(iii) Determine the probability of drawing two queens in two consecutive tries without replacement. The latter means that the card from the first draw is removed from the deck. (25 pts)

Hint 1: In each case, start by defining the event of interest (e.g., in all three questions let A denote an event of drawing a queen). Hint 2: Whenever necessary, determine whether two events are independent or not. Hint 3: You can report your answers in simple fractions.

Solution:

(i) Let A denote an event of drawing a queen. Since there are 4 queens among 52 cards, drawing any one of them has the probability $P(A)=4 / 52=1 / 13$.
(ii) Let A denote an event of drawing a queen on the first try. Let B denote an event of drawing a queen on the second try. The event of interest, i.e., drawing two queens in two tries, is $A \cap B$. Since whichever card is drawn first is placed back into the deck, the second attempt is independent of the first, i.e., A and B are independent. Therefore, their probability is

$$
P(A \cap B)=P(A) P(B)=\frac{4}{52} \times \frac{4}{52}=\frac{1}{169} .
$$

(iii) If A happened, the deck has 51 cards and contains 3 queens. Therefore, the conditional probability of drawing the second queen is $P(B \mid A)=3 / 51$. Consequently,

$$
P(A \cap B)=P(B \mid A) P(A)=\frac{3}{51} \times \frac{1}{13}=\frac{1}{17} \times \frac{1}{13}=\frac{1}{221} .
$$

