1 Controllability and Observability

1.1 Linear Time-Invariant (LTI) Systems

State-space:

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad x(0)=x_{0} \\
& y=C x+D u
\end{aligned}
$$

Dimensions:

$$
x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad y \in \mathbb{R}^{p}
$$

Notation

$$
\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

Transfer function:

$$
H(s)=C(s I-A)^{-1} B+D
$$

Note that $H(s)$ is always proper!
Similarity transformation:

$$
\left[\begin{array}{c|c}
T^{-1} A T & T^{-1} B \\
\hline C T & D
\end{array}\right] \sim\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]
$$

Similarity does not change transfer function

$$
H(s)=C T\left(s I-T^{-1} A T\right)^{-1} T^{-1} B+D=C(s I-A)^{-1} B+D
$$

System response:

$$
Y(s)=\underbrace{H(s) U(s)}_{\text {Input }}+\underbrace{C(s I-A)^{-1} x(0)}_{\text {Initial conditions }}
$$

MIMO comes for free!

1.2 Concepts from MAE 280 A

Controllability Matrix:

$$
\mathcal{C}(A, B)=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right] .
$$

Controllability Gramian:

$$
X(t)=\int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi
$$

Observability Matrix:

$$
\mathcal{O}(A, C)=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

Observability Gramian:

$$
Y(t)=\int_{0}^{t} e^{A^{T} \xi} C^{T} C e^{A \xi} d \xi
$$

1.3 Controllability

Problem: Given $x(0)=0$ and any \bar{x}, can one compute $u(t)$ such that $x(\bar{t})=\bar{x}$ for some $\bar{t}>0$?

Theorem: The following are equivalent
a) The pair (A, B) is controllable;
b) The Controllability Matrix $\mathcal{C}(A, B)$ has full-row rank;
c) There exists no $z \neq 0$ such that $z^{*} A=\lambda z^{*}, \quad z^{*} B=0$;
d) The Controllability Gramian $X(t)$ is positive definite for some $t \geq 0$.

1.4 Observability

Problem: Given $y(t)$ over $t \in[0, \bar{t}]$ with $\bar{t}>0$ can one compute $x(t)$ for all $t \in[0, t]$?

Theorem: The following are equivalent
a) The pair (A, C) is observable;
b) The Observability Matrix $\mathcal{O}(A, C)$ has full-column rank;
c) There exists no $x \neq 0$ such that $A x=\lambda x, \quad C x=0$;
d) The Observability Gramian $Y=Y(t)$ is positive definite for some $t \geq 0$.

1.5 Things you should already know

1. Why a) and b) are equivalent.
2. Why can we stop $\mathcal{C}(A, B)$ at $A^{n-1} B$ and $\mathcal{O}(A, C)$ at $C A^{n-1}$?
3. Kalman canonical forms. E.g. if (A, C) is not observable then

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
A_{o} & 0 & B_{o} \\
A_{\bar{\sigma} o} & A_{\bar{o}} & B_{\bar{o}} \\
\hline C_{o} & 0 & 0
\end{array}\right]
$$

where $A_{o} \in \mathbb{R}^{r \times r}$ and $\left(A_{o}, C_{o}\right)$ is observable.

1.6 The Popov-Belevitch-Hautus Test

Theorem: The pair (A, C) is observable if and only if there exists no $x \neq 0$ such that

$$
\begin{equation*}
A x=\lambda x, \quad C x=0 \tag{1}
\end{equation*}
$$

Proof:

Sufficiency: Assume there exists $x \neq 0$ such that (1) holds. Then

$$
\begin{gathered}
C A x=\lambda C x=0, \\
C A^{2} x=\lambda C A x=0, \\
\vdots \\
C A^{n-1} x= \\
=\lambda C A^{n-2} x=0
\end{gathered}
$$

so that

$$
\mathcal{O}(A, C) x=0
$$

which implies that the pair (A, C) is not observable.
Necessity: Assume that (A, C) is not observable. Then transform it into the equivalent non observable realization where

$$
\bar{A}=\left[\begin{array}{cc}
A_{o} & 0 \\
A_{\bar{o} o} & A_{\bar{o}}
\end{array}\right], \quad \bar{C}=\left[\begin{array}{ll}
C_{o} & 0
\end{array}\right] .
$$

Chose $x \neq 0$ such that

$$
A_{\bar{o}} x=\lambda x .
$$

Then

$$
\left[\begin{array}{cc}
A_{o} & 0 \\
A_{\bar{o} o} & A_{\bar{o}}
\end{array}\right]\binom{0}{x}=\lambda\binom{0}{x}, \quad\left[\begin{array}{ll}
C_{o} & 0
\end{array}\right]\binom{0}{x}=0 .
$$

1.7 Controllability Gramian

Problem: Given $x(0)=0$ and any \bar{x}, compute $u(t)$ such that $x(\bar{t})=\bar{x}$ for some $\bar{t}>0$.

Solution: We know that

$$
\bar{x}=x(\bar{t})=\int_{0}^{\bar{t}} e^{A(\bar{t}-\tau)} B u(\tau) d \tau .
$$

If we limit our search to controls u of the form

$$
u(t)=B^{T} e^{A^{T}(\bar{t}-t)} \bar{z}
$$

we have

$$
\begin{aligned}
\bar{x} & =\int_{0}^{\bar{t}} e^{A(\bar{t}-\tau)} B B^{T} e^{A^{T}(\bar{t}-\tau)} \bar{z} d \tau \\
& =\left(\int_{0}^{\bar{t}} e^{A(\bar{t}-\tau)} B B^{T} e^{A^{T}(\bar{t}-\tau)} d \tau\right) \bar{z}, \quad \xi=\bar{t}-\tau \\
& =\left(\int_{0}^{\bar{t}} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi\right) \bar{z}
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{z}=\left(\int_{0}^{\bar{t}} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi\right)^{-1} \bar{x} \\
& \Rightarrow \quad u(t)=B^{T} e^{A^{T}(\bar{t}-t)}\left(\int_{0}^{\bar{t}} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi\right)^{-1} \bar{x}
\end{aligned}
$$

The symmetric matrix

$$
X(t):=\int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi
$$

is the Controllability Gramian.

1.8 Stabilizability

Problem: Given any $x(0)=\bar{x}$ can one compute $u(t)$ such that $x(\bar{t})=0$ for some $\bar{t}>0$?

Theorem: The following are equivalent
a) The pair (A, B) is stabilizable;
b) There exists no $z \neq 0$ and λ such that $z^{*} A=\lambda z^{*}, \quad z^{*} B=0$ with $\lambda+\lambda^{*} \geq 0$.

1.9 Detectability

Problem: Given $y(t)$ over $t \in[0, \bar{t}]$ with $\bar{t}>0$ can one compute $x(\bar{t})$?

Theorem: The following are equivalent
a) The pair (A, C) is detectable;
b) There exists no $x \neq 0$ and λ such that $A x=\lambda x, \quad C x=0$ with $\lambda+\lambda^{*} \geq 0$.

1.10 Example: satellite in circular orbit

Satellite of mass m with thrust in the radial direction u_{1} and in the tangential direction u_{2}. From Skelton, DSC, p. 101.

Newton's law

$$
m \ddot{\vec{r}}=\vec{u}_{1}+\vec{u}_{2}+\vec{f}_{g},
$$

where \vec{f}_{g} is the gravitational force

$$
\vec{f}_{g}=-\frac{k m}{r^{2}} \frac{\vec{r}}{r} .
$$

Using cylindrical coordinates

$$
\vec{e}_{1}=\binom{\cos \theta}{\sin \theta}, \quad \vec{e}_{2}=\binom{-\sin \theta}{\cos \theta},
$$

we have

$$
\vec{r}=r \vec{e}_{1}, \quad \vec{u}_{1}=u_{1} \vec{e}_{1}, \quad \vec{u}_{2}=u_{2} \vec{e}_{2}, \quad \vec{f}_{g}=-\frac{k m}{r^{2}} \vec{e}_{1} .
$$

We need to compute

$$
\ddot{\vec{r}}=\frac{d^{2}}{d t^{2}}\left(r \vec{e}_{1}\right)=\frac{d}{d t}\left(\dot{r} \vec{e}_{1}+r \dot{\vec{e}_{1}}\right)=\ddot{r} \vec{e}_{1}+2 \dot{r} \dot{\vec{e}}_{1}+r \ddot{\vec{e}}_{1},
$$

where

$$
\begin{aligned}
& \dot{\vec{e}}_{1}=\dot{\theta}\binom{-\sin \theta}{\cos \theta}=\dot{\theta} \vec{e}_{2}, \\
& \ddot{\vec{e}_{1}}=\ddot{\theta}\binom{-\sin \theta}{\cos \theta}+\dot{\theta}^{2}\binom{-\cos \theta}{-\sin \theta}=\ddot{\theta} \vec{e}_{2}-\dot{\theta}^{2} \vec{e}_{1} .
\end{aligned}
$$

That is

$$
\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{1}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \vec{e}_{2},
$$

so that Newton's law can be rewritten as

$$
m\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{1}+m(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \vec{e}_{2}=u_{1} \vec{e}_{1}+u_{2} \vec{e}_{2}-\frac{k m}{r^{2}} \overrightarrow{e_{1}},
$$

or, equivalently, as the two scalar differential equations

$$
\begin{aligned}
m\left(\ddot{r}-r \dot{\theta}^{2}\right) & =u_{1}-\frac{k m}{r^{2}}, \\
m(2 \dot{r} \dot{\theta}+r \ddot{\theta}) & =u_{2} .
\end{aligned}
$$

In state space

$$
x=\left(\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right), \quad \dot{x}=\left(\begin{array}{c}
\dot{r} \\
\dot{\theta} \\
\ddot{r} \\
\ddot{\theta}
\end{array}\right)=\left(\begin{array}{c}
x_{3} \\
x_{4} \\
x_{1} x_{4}^{2}-k / x_{1}^{2} \\
-2 x_{3} x_{4} / x_{1}
\end{array}\right)+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 / m & 0 \\
0 & 1 /\left(m x_{1}\right)
\end{array}\right]\binom{u_{1}}{u_{2}} .
$$

This is a nonlinear system and we look for equilibrium ($\ddot{r}=\ddot{\theta}=0$) when $u_{1}=u_{2}=0$. This can be stated as

$$
x_{1} x_{4}^{2}-k / x_{1}^{2}=0, \quad-2 x_{3} x_{4} / x_{1}=0 .
$$

The second condition implies $x_{3}=\dot{r}$ and/or $x_{4}=\dot{\theta}$ must be zero. We choose $x_{3}=\dot{r}=0$ which implies $x_{1}=r=\bar{r}$ constant and

$$
x_{4}=\dot{\theta}=\sqrt{\frac{k}{x_{1}^{3}}}=\sqrt{\frac{k}{\bar{r}^{3}}}=\bar{\omega} \quad \Rightarrow \quad k=\bar{r}^{3} \bar{\omega}^{2} .
$$

Note also that $x_{2}=\theta=\bar{\omega} t$.

This nonlinear system is in the form

$$
\dot{x}=f(x, t)+g(x) u .
$$

We will linearize $f(x, t)$ and $g(x) u$ around the equilibrium point (\bar{x}, \bar{u}) to obtain the linearized system

$$
\dot{x}=\left(\nabla f_{x}\right)^{T}[x(t)-\bar{x}(t)]+\left(\nabla g_{x}\right)^{T}[x(t)-\bar{x}(t)] \bar{u}+g(\bar{x}) u .
$$

For this problem

$$
\bar{x}(t)=\left(\begin{array}{c}
\bar{r} \\
\bar{\omega} t \\
0 \\
\bar{\omega}
\end{array}\right), \quad \bar{u}=0, \quad f(x, t)=\left(\begin{array}{c}
x_{3} \\
x_{4} \\
x_{1} x_{4}^{2}-k / x_{1}^{2} \\
-2 x_{3} x_{4} / x_{1}
\end{array}\right), g(x)=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 / m & 0 \\
0 & 1 /\left(m x_{1}\right)
\end{array}\right],
$$

and

$$
\left(\nabla f_{x}\right)^{T}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 k / \bar{r}^{3}+\bar{\omega}^{2} & 0 & 0 & 2 \bar{r} \bar{\omega} \\
0 & 0 & -2 \bar{\omega} / \bar{r} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
3 \bar{\omega}^{2} & 0 & 0 & 2 \bar{r} \bar{\omega} \\
0 & 0 & -2 \bar{\omega} / \bar{r} & 0
\end{array}\right] .
$$

This produces the linearized system

$$
\dot{x}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
3 \bar{\omega}^{2} & 0 & 0 & 2 \bar{r} \bar{\omega} \\
0 & 0 & -2 \bar{\omega} / \bar{r} & 0
\end{array}\right] x+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 / m & 0 \\
0 & 1 /(m \bar{r})
\end{array}\right]\binom{u_{1}}{u_{2}} .
$$

If we looking at the satellite (from the earth) we can say that we can observe r and $\dot{\theta}$ (how?), that is

$$
y=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] x .
$$

Questions:

1) Can we estimate the state of the satellite is by measuring only r ?
2) Can we estimate the state of the satellite is by measuring only $\dot{\theta}$?
3) Can we estimate the state of the satellite by measuring r and $\dot{\theta}$?
4) Can the system be controlled to remain in circular orbit using radial thrusting (u_{1}) alone?
5) Can the system be controlled using tangential thrusting $\left(u_{2}\right)$ alone?

Question: Can we estimate the state of the satellite by measuring only r ?
Answer: Is the system observable when $C=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$? Compute the observability matrix

$$
\begin{aligned}
\mathcal{O}(A, C) & =\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
C A^{3}
\end{array}\right], \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 3 \bar{\omega}^{2} & 0 & 0 & 2 \bar{r} \bar{\omega} \\
\hline 0 & 0 & -\bar{\omega}^{2} & 0
\end{array}\right]
\end{aligned}
$$

Physical interpretation: measuring r does not give any information on θ or $\bar{\theta}$! Note that if we that know the satellite is in equilibrium and "measure" k then

$$
\dot{\theta}=\bar{\omega}=\sqrt{\frac{k}{\bar{r}^{3}}} .
$$

But we still do not know θ since

$$
\theta(t)=\theta(0)+\omega t,
$$

and we do not know $\theta(0)$!

Question: Can we estimate the state of the satellite by observing $\dot{\theta}$ only? Answer: Is the system observable when $C=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$? Compute the observability matrix

$$
\begin{aligned}
\mathcal{O}(A, C) & =\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
C A^{3}
\end{array}\right], \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
\hline 0 & 0 & -2 \bar{\omega} / \bar{r} & 0 \\
\hline-6 \bar{\omega}^{3} / \bar{r} & 0 & 0 & -4 \bar{\omega}^{2} \\
\hline 0 & 0 & 2 \bar{\omega}^{3} / \bar{r} & 0
\end{array}\right]
\end{aligned}
$$

Physical interpretation: again, if we try to reconstruct θ from $\dot{\theta}$ we still need to know θ at some \bar{t} ! From that point on

$$
\theta=\theta(\bar{t})+\int_{\bar{t}}^{t} \dot{\theta}(\tau) d \tau .
$$

Question: Can we estimate the state of the satellite by measuring r and $\dot{\theta}$? Answer: Is the system observable when $C=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$? Compute the observability matrix

$$
\begin{aligned}
\mathcal{O}(A, C) & =\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
C A^{3}
\end{array}\right], \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & -2 \bar{\omega} / \bar{r} & 0 \\
\hline 3 \bar{\omega}^{2} & 0 & 0 & 2 \bar{r} \bar{\omega} \\
-6 \bar{\omega}^{3} / \bar{r} & 0 & 0 & -4 \bar{\omega}^{2} \\
\hline 0 & 0 & -\bar{\omega}^{2} & 0 \\
0 & 0 & 2 \bar{\omega}^{3} / \bar{r} & 0
\end{array}\right]
\end{aligned}
$$

Physical interpretation: can we estimate θ at all?

Question: Can the system be controlled to remain in circular orbit using radial thrusting $\left(u_{1}\right)$ alone?

Answer: Is the system controllable when $B=\left[\begin{array}{c}0 \\ 0 \\ 1 / m \\ 0\end{array}\right]$? Compute the controllability matrix

$$
\begin{aligned}
\mathcal{O}(A, C) & =\left[\begin{array}{ll|l|l}
B & A B & A^{2} B & A^{3} B
\end{array}\right] \\
& =\frac{1}{m}\left[\begin{array}{l|c|c|c}
0 & 1 & 0 & -\bar{\omega}^{2} \\
0 & 0 & -2 \bar{\omega} / \bar{r} & 0 \\
1 & 0 & -\bar{\omega}^{2} & 0 \\
0 & -2 \bar{\omega} / \bar{r} & 0 & 2 \bar{\omega}^{3} / \bar{r}
\end{array}\right]
\end{aligned}
$$

Note that

$$
-\bar{\omega}^{2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-2 \bar{\omega} / \bar{r}
\end{array}\right)=\left(\begin{array}{c}
-\bar{\omega}^{2} \\
0 \\
0 \\
2 \bar{\omega}^{3} / \bar{r}
\end{array}\right)
$$

which implies that the system is not controllable from u_{1} !
Physical interpretation: there must be a change in the angular velocity $\dot{\theta}$ if one changes the radius!

Question: Can the system be controlled using tangential thrusting (u_{2}) alone?

Answer: Is the system controllable when $B=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 /(m \bar{r})\end{array}\right]$? Compute the controllability matrix

$$
\begin{aligned}
\mathcal{O}(A, C) & =\left[\begin{array}{ll|c|c}
B & A B & A^{2} B & A^{3} B
\end{array}\right] \\
& =\frac{1}{m \bar{r}}\left[\begin{array}{l|c|c|c}
0 & 0 & 2 \bar{r} \bar{\omega} & 0 \\
0 & 1 & 0 & -4 \bar{\omega}^{2} \\
0 & 2 \bar{r} \bar{\omega} & 0 & -2 \bar{r} \bar{\omega}^{3} \\
1 & 0 & -4 \bar{\omega}^{2} & 0
\end{array}\right]
\end{aligned}
$$

The above matrix has full rank, so the system is controllable from u_{2} ! Physical interpretation: we can change the radius by changing the angular velocity!

1.11 More on Gramians

Theorem: The Controllability Gramian

$$
X(t)=\int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi
$$

is the solution to the differential equation

$$
\frac{d}{d t} X(t)=A X(t)+X(t) A^{T}+B B^{T} .
$$

If $X=\lim _{t \rightarrow \infty} X(t)$ exists then

$$
A X+X A^{T}+B B^{T}=0
$$

Theorem: The Observability Gramian

$$
Y(t)=\int_{0}^{t} e^{A^{T} \xi} C^{T} C e^{A \xi} d \xi
$$

is the solution to the differential equation

$$
\frac{d}{d t} Y(t)=A^{T} Y(t)+Y(t) A+C^{T} C
$$

If $Y=\lim _{t \rightarrow \infty} X(t)$ exists then

$$
A^{T} Y+Y A+C^{T} C=0
$$

Proof (Controllability): For the first part, compute

$$
\begin{aligned}
\frac{d}{d t} X(t)= & \frac{d}{d t} \int_{0}^{t} e^{A \xi} B B^{T} e^{A^{T} \xi} d \xi=\frac{d}{d t} \int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)} d \tau, \\
= & \int_{0}^{t} \frac{d}{d t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)}+\left.e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)}\right|_{\tau=t} \\
= & A\left(\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)} d \tau\right) \\
& \quad+\left(\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A^{T}(t-\tau)} d \tau\right) A^{T}+B B^{T} \\
= & A X(t)+X(t) A^{T}+B B^{T} .
\end{aligned}
$$

For the second part, use the fact that $X(t)$ is smooth and therefore

$$
\lim _{t \rightarrow \infty} X(t)=X \quad \Rightarrow \quad \lim _{t \rightarrow \infty} \frac{d}{d t} X(t)=0
$$

Lemma: Consider the Lyapunov Equation

$$
A^{T} X+X A+C^{T} C=0
$$

where $A \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{m \times n}$.

1. A solution $X \in \mathbb{C}^{n \times n}$ exists and is unique if and only if $\lambda_{j}(A)+\lambda_{i}^{*}(A) \neq 0$ for all $i, j=1, \ldots, n$. Furthermore X is symmetric.
2. If A is Hurwitz then X is positive semidefinite.
3. If (A, C) is detectable and X is positive semidefinite then A is Hurwitz.
4. If (A, C) is observable and A is Hurwitz then X is positive definite.

Proof:
Item 1. The Lyapunov Equation is a linear equation and it has a unique solution if and only if the homogeneous equation associated with the Lyapunov equation admits only the trivial solution. Assume it does not, that is, there $\bar{X} \neq 0$ such that

$$
A^{T} \bar{X}+\bar{X} A=0
$$

Then, multiplication of the above on the right by $x_{i}^{*} \neq 0$, the i th eigenvector of A and on the right by $x_{j}^{*} \neq 0$ yields

$$
0=x_{i}^{*} A^{T} \bar{X} x_{j}+x_{i}^{*} \bar{X} A x_{j}=\left[\lambda_{j}(A)+\lambda_{i}^{*}(A)\right] x_{i}^{*} \bar{X} x_{j} .
$$

Since $\lambda_{i}(A)+\lambda_{j}(B) \neq 0$ by hypothesis we must have $x_{i}^{*} \bar{X} x_{j}=0$ for all i, j. One can show that this indeed implies $\bar{X}=0$, establishing a contradiction.
That X is symmetric follows from uniqueness since

$$
\begin{aligned}
0 & =\left(A^{T} X+X A+C^{T} C\right)^{T}-\left(A^{T} X+X A+C^{T} C\right) \\
& =A^{T}\left(X^{T}-X\right)+\left(X^{T}-X\right) A
\end{aligned}
$$

so that $X^{T}-X=0$.
Item 2. If A is Hurwitz then $\lim _{t \rightarrow \infty} e^{A t}=0$. But

$$
X=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t \succeq 0
$$

and

$$
A^{T} X+X A=\lim _{t \rightarrow \infty} \int_{0}^{\infty} \frac{d}{d t} e^{A^{T} t} C^{T} C e^{A t} d t=\left.e^{A^{T} t} C^{T} C e^{A t}\right|_{0} ^{\infty}=-C^{T} C
$$

Item 3. Assume (A, C) is detectable, $X \succeq 0$ and that A is not Hurwitz. Then there exists λ and $x \neq 0$ such that $A x=\lambda x$ with $\lambda+\lambda^{*} \geq 0$. But if X solves the Lyapunov equation

$$
-x^{*} C^{T} C x=x^{*} A^{T} X x+x^{*} X A x=\left(\lambda+\lambda^{*}\right) x^{*} X x \geq 0
$$

which implies $C x=0$, hence (A, C) not detectable.
Item 4. Assume that (A, C) is observable and A is Hurwitz. From Item 2. $X \succeq 0$. Assume X is not positive definite, that is, there exists $\bar{x} \neq 0$ such that $X \bar{x}=0$. It follows that

$$
0=\bar{x}^{*} X \bar{x}=\int_{0}^{\infty} \bar{x}^{*} e^{A^{T} t} C^{T} C e^{A t} \bar{x} d t=\int_{0}^{\infty} y^{*}(t) y(t) d t
$$

which implies that response $y(t)=C e^{A t} \bar{x}=0$ to a non null initial condition $x(0)=\bar{x}$ is null, which contradicts the hypothesis that (A, C) is observable.

