
1 Some Facts on Symmetric Matrices

Definition: Matrix A is symmetric if A = AT .

Theorem: Any symmetric matrix

1) has only real eigenvalues;

2) is always diagonalizable;

3) has orthogonal eigenvectors.

Corollary: If matrix A then there exists QTQ = I such that A = QTΛQ.

Proof:

1) Let λ ∈ C be an eigenvalue of the symmetric matrix A. Then Av = λv,
v 6= 0, and

v∗Av = λv∗v, v∗ = v̄T .

But since A is symmetric

λv∗v = v∗Av = (v∗Av)∗ = λ̄v∗v.

Therefore, λ must be equal to λ̄!

2) If the symmetric matrix A is not diagonalizable then it must have
generalized eigenvalues of order 2 or higher. That is, for some repeated
eigenvalue λi there exists v 6= 0 such that

(A − λiI)2v = 0, (A − λiI)v 6= 0

But note that

0 = v∗(A − λiI)2v = v∗(A − λiI)(A − λiI) 6= 0,

which is contradiction. Therefore, as there exists no generalized eigenvectors
of order 2 or higher, A must be diagonalizable.

3) As A must have no generalized eigenvector of order 2 or higher

AT = A
[
v1 · · · vn

]
=
[
v1 · · · vn

]
Λ = TΛ, |T | 6= 0.

That is A = T−1ΛT . But since A is symmetric

T−1ΛT = A = AT = (T−1ΛT )T = T TΛT−T ⇒ T T = T−1

or
T TT = I ⇒ vT

i vi = 1, vT
i vj = 0, ∀i 6= j.
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1.1 Positive definite matrices

Definition: The symmetric matrix A is said positive definite (A > 0) if all its
eigenvalues are positive.
Definition: The symmetric matrix A is said positive semidefinite (A ≥ 0) if all
its eigenvalues are non negative.

Theorem: If A is positive definite (semidefinite) there exists a matrix A1/2 > 0
(A1/2 ≥ 0) such that A1/2A1/2 = A.

Proof: As A is positive definite (semidefinite)

A = QTΛQ, QTQ = QQT = I

= QTΛ1/2Λ1/2Q, Λ
1/2
ii =

√

λi

= QTΛ1/2Q
︸ ︷︷ ︸

QTΛ1/2Q
︸ ︷︷ ︸

,

A1/2 A1/2

Theorem: A is positive definite if and only if xTAx > 0, ∀x 6= 0.

Proof:

Assume there is x 6= 0 such that xTAx ≤ 0 and A is positive definite. Then
there exists QTQ = I such that A = QTΛQ with Λii = λi > 0. Then for y 6= 0
such that x = QTy

0 ≥ xTAx = yTQAQy = yTQQTΛQQTy = yTΛy =
n∑

i=1

λiy
2
i > 0

which is a contradiction.
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2 Controllability Gramian

LTI system in state space

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

Problem: Given x(0) = 0 and any x̄, compute u(t) such that x(t̄) = x̄ for
some t̄ > 0.

Solution: We know that

x̄ = x(t̄) =

∫ t̄

0

eA(t̄−τ)Bu(τ)dτ.

If we limit our search for solutions u in the form

u(t) = BTeAT (t̄−t)z̄

we have

x̄ =

∫ t̄

0

eA(t̄−τ)BBTeAT (t̄−τ)z̄dτ,

=

(
∫ t̄

0

eA(t̄−τ)BBTeAT (t̄−τ)dτ

)

z̄, ξ = t̄ − τ

=

(
∫ t̄

0

eAξBBTeAT ξdξ

)

z̄,

and

z̄ =

(
∫ t̄

0

eAξBBTeAT ξdξ

)−1

x̄,

⇒ u(t) = BTeAT (t̄−t)

(
∫ t̄

0

eAξBBTeAT ξdξ

)−1

x̄

The symmetric matrix

X(t) :=

∫ t

0

eAξBBTeAT ξdξ

is known as the Controllability Gramian.
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2.1 Properties of the Controllability Gramian

Theorem: The Controllability Gramian

X(t) =

∫ t

0

eAξBBTeAT ξdξ,

is the solution to the differential equation

d

dt
X(t) = AX(t) + X(t)AT + BBT .

If X = limt→∞ X(t) exists then

AX + XAT + BBT = 0.

Proof: For the first part, compute

d

dt
X(t) =

d

dt

∫ t

0

eAξBBTeAT ξdξ =
d

dt

∫ t

0

eA(t−τ)BBTeAT (t−τ)dτ,

=

∫ t

0

d

dt
eA(t−τ)BBTeAT (t−τ) + eA(t−τ)BBTeAT (t−τ)

∣
∣
∣
τ=t

,

= A

(∫ t

0

eA(t−τ)BBTeAT (t−τ)dτ

)

+

(∫ t

0

eA(t−τ)BBTeAT (t−τ)dτ

)

AT + BBT ,

= AX(t) + X(t)AT + BBT .

For the second part, use the fact that X(t) is smooth and therefore

lim
t→∞

X(t) = X ⇒ lim
t→∞

d

dt
X(t) = 0.
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2.2 Summary on Controllability

Theorem: The following are equivalent

1) The pair (A, B) is controllable;

2) The Controllability Matrix C(A, B) has full-row rank;

3) There exists no z 6= 0 such that z∗A = λz, z∗B = 0;

4) The Controllability Gramian X(t) is positive definite for some t ≥ 0.

Proof:

Everything has already been proved except the equivalence of 4).
Sufficiency: Immediate from the construction of u(t).
Necessity: First part:

X(t) =

∫ t

0

eAξBBTeAT ξdξ ≥ 0

by construction. We have to prove that when (A, B) is controllable then
X(t) > 0. To prove this assume that (A, B) is controllable but X(t) is not
positive definite. So there exists z 6= 0 such that

z∗eAτB ≡ 0, ∀ 0 ≤ τ ≤ t.

But this implies

di

dτ i
(i! z∗eAτB)

∣
∣
∣
∣
τ=0

= z∗AieAτB
∣
∣
τ=0

= z∗AiB = 0, i = 0, . . . , n − 1

which implies C(A, B) does not have full-row rank (see proof of the
Popov-Belevitch-Hautus Test).
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3 Observability Gramian

LTI system in state space

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

Problem: Given u(t) = 0 and y(t) compute x(0).

Solution: We know that
y(t) = CeAtx(0).

Multiplying on the left by eAT tCT and integrating from 0 to t we have

∫ t

0

eAT ξCTy(ξ)dξ =

(∫ t

0

eAT ξCTCeAξdξ

)

x(0)

from which

x(0) =

(∫ t

0

eAT ξCTCeAξdξ

)−1 ∫ t

0

eAT ξCTy(ξ)dξ.

The symmetric matrix

Y (t) :=

∫ t

0

eAT ξCTCeAξdξ

is known as the Observability Gramian.
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3.1 Properties of the Observability Gramian

Theorem: The Observability Gramian

Y (t) =

∫ t

0

eAT ξCTCeAξdξ,

is the solution to the differential equation

d

dt
Y (t) = ATY (t) + Y (t)A + CTC.

If Y = limt→∞ X(t) exists then

ATY + Y A + CTC = 0.

3.2 Summary on Observability

Theorem: The following are equivalent

1) The pair (A, C) is observable;

2) The Observability Matrix O(A, C) has full-column rank;

3) There exists no x 6= 0 such that Ax = λx, Cx = 0;

4) The Observability Gramian Y = Y (t) is positive definite for some t ≥ 0.
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4 Controllability, Observability and Duality

Primal LTI system in state space

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

Dual LTI system in state space

ẋ(t) = ATx(t) + CTu(t),

y(t) = BTx(t).

The primal system is observable if and only if the dual system in controllable.
The primal system is controllable if and only if the dual system in observable.
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